
Systems Nanotechnology: 

Moving from Nano-science to 

Nano-products

Richard D. Braatz 

http://web.mit.edu/braatzgroup



Outline

• Introduction

• Challenges and questions

• Some approaches• Some approaches

• Some more questions



Control of events at the molecular scale has become 
critical to product quality in many applications

1. Micro/nano-
electronics

2. Nucleation of 
proteins & drugs

3. Chemical/bio sensors Images courtesy of Intel, Michael 
S. Strano, and Paul J. A. Kenis



Motivation for Systems Nanotechnology

• An established field? An ISI search of “nano*” and 

“design or control” listed 100,000+ papers

– Interpretation: The need for systems technology is high

• How many papers apply systematic tools?

– Very few

• Motivates efforts to generate systems/control methods

• Let’s explore some challenges/questions in systems 

nanotechnology & some approaches for addressing 

these challenges (with some example applications)
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1. High state dimensionality and inherent 
stochasticity of molecular events

Q: How do we formulate tractable approaches to 
address systems with these characteristics?

2. Sparsity of on-line measurements available 
for process identification

Typical Challenges, and Some Questions

for process identification

Q: How do we abstract the most information from the 
data, and redesign systems to obtain more data?

3. Sparsity of manipulated variables available 
for process identification and control

Q: How do we redesign systems to have more 
manipulated variables, and formulate tractable 
approaches to dealing with some of these new 
modes of manipulation?



1. High state dimensionality and inherent 
stochasticity of molecular events

• The dynamics of molecular events are often modeled by 
Chemical Master equations (up to 100s of seconds)

• In CME the configuration of the process is defined by the 
identity and positions of atoms or molecules on a lattice

• A lattice can be defined• A lattice can be defined
by spatial position 
(right) or non-spatially 
such as the # of 
molecules adsorbed 
on a carbon nanotube

T. O. Drews, A. Radisic, J. Erlebacher, R. D. Braatz, 
P. C. Searson, and R. C. Alkire. J. Electrochem. 
Soc., 153:C434-C441, 2006



Example: Single-molecule carbon nanotube 
sensor arrays
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Z. W. Ulissi, J. Zhang, A. A. Boghossian, N. F. Reuel, S. F. E. Shimizu, R. D. Braatz, 
and M. S. Strano. J. Phys. Chem. Lett., 2:1690-1694, 2011; A. A. Boghossian, J. 
Zhang, F. T. Le Floch, Z. W. Ulissi, P. Bojo, J.-H. Han, J.-H. Kim, J. R. Arkalgud, N. F. 
Reuel, R. D. Braatz, and M. S. Strano. J. Chem. Phys., 135:art no. 084124, 2011



Example: Single-molecule carbon nanotube 
sensor arrays
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Example: Single-molecule carbon nanotube 
sensor arrays

• Experimental outputs are inherently stochastic, even
when all ICs and inputs are completely deterministic

• Repeating an experiment will produce different 
adsorption and desorption times nearly every time
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Example: Single-molecule carbon nanotube 
sensor arrays

Such phenomena are described by a Chemical Master equation

E.g., consider adsorption/desorption on one carbon nanotube
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Four configurations (simplified diagram)

Z. W. Ulissi, J. Zhang, A. A. Boghossian, N. F. Reuel, S. F. E. Shimizu, R. D. Braatz, and M. S. Strano. J. Phys. Chem. Lett., 
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Reuel, R. D. Braatz, and M. S. Strano. J. Chem. Phys., 135:art no. 084124, 2011



Example: Single-molecule carbon nanotube 
sensor arrays

Chemical Master equation
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• Simulation outputs are inherently stochastic, even
when all ICs and inputs are completely deterministic

• Often a huge number of configurations (>>109) 
���� usually kinetic Monte Carlo (KMC) simulation is used to 

simulate a possible future state trajectory instead

• Just as in experiments, repeating a KMC simulation 
will produce different trajectories nearly every time



Example: Crystal nucleation within nL droplets

• Nucleation in nL 
droplets applied to 
proteins & drugs

L. M. Goh, K. J. Chen, V. Bhamidi, G. He, N. C. S. Kee, P. J. A. Kenis, C. F. Zukoski, and R. D. Braatz. 
Crystal Growth & Design, 10:2515-2521, 2010; K. Chen, L. M. Goh, G. W. He, V. Bhamidi, P. J. A. Kenis, 
C.F. Zukoski, and R. D. Braatz. Chem. Eng. Sci., 77:235-241, 2012

Photo courtesy of Paul Kenis
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Example: Crystal nucleation within nL droplets

• Nucleation in nL 
droplets applied to 
proteins & drugs

thaumatinribonuclease A              succinic acidL-histidine lysozyme

Scale bar is 500 µm

L. M. Goh, K. J. Chen, V. Bhamidi, G. He, N. C. S. Kee, P. J. A. Kenis, C. F. Zukoski, and R. D. Braatz. 
Crystal Growth & Design, 10:2515-2521, 2010



Example: Crystal nucleation within nL droplets

• Nucleation in nL 
droplets applied to 
proteins & drugs

• Nucleation time 
= time to nucleate at 

least one crystalleast one crystal

• Measure a distribution of induction 
times, even when the exact same 
experimental conditions are repeated

• Nucleation results from a few 
molecules coming together6 8 10 12 14
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2. Sparsity of on-line measurements available 
for process identification: Example

• Can detect when 
crystals form in 
nL drops by x-ray 
crystallography 

• Only 1 data point 
per experiment

Courtesy of 
Paul Kenis
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• No real-time sensors are available 
for measurement during nucleation

• In particular, no real-time 
measurement of solution 
concentrations in nL droplets 
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3. Sparsity of manipulated variables available 
for process identification and control

• Can detect when 
crystals form in 
nL drops by x-ray 
crystallography 

• Only 1 data point 
per experiment

Courtesy of 
Paul Kenis

per experiment

• The only real-time manipulated 
variable is typically the temperature, 
but most proteins and many drugs 
are too thermally sensitive for T 
to be used as a manipulated variable6 8 10 12 14
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1. High state dimensionality and inherent stochasticity

of molecular events

Q: How do we formulate tractable approaches to 

address systems with these characteristics?

Some approaches:

Typical Challenges, and Some Questions

Some approaches:

� Run lots of KMC simulations, fit low-order models, and use 
to estimate parameters and for design (Kevrekidis, Vlachos)

� Accelerate KMC by exploiting scale separation inherent in 
many systems (Rao, Rawlings, Kevrekidis, Vlachos, …)

� Numerically solve Chemical Master equation (Paul Barton, 
George Stephanopoulos, Mustafa Khammash)

� Analytically solve Chemical Master equation by exploiting 
the structure of interactions between events
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• Several engineers have 
applied this approach, 
works for nano and 
multiscale

PSE Tools Based on KMC Simulations

Multiple

Models

Optimal
Parameter
Estimation

ab initio computational chemistry calculations   

Experimental
Data

Collection

D-optimalexperimental Replace CME with 

R. D. Braatz, R. C. Alkire, E. G. 
Seebauer, T. O. Drews, E. Rusli, M. 
Karulkar, F. Xue, Y. Qin, M. Y. L. 
Jung, and R. Gunawan. Comp. & 
Chem. Eng., 30:1643-1656, 2006 

• All steps implemented, 
including control (see 
cited paper for details)

• Some nice simulation 
work but controls 
is “brute force”

NO

YES

design constraints &

performance criteria

Robust

Optimization

Integrated

design

Is model
accurate?

Model
Selection

ModelsD-optimal
Experimental

Design

experimental

constraints

Replace CME with 
low-order models fit 
to KMC simulations
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Standard Approach is to use KMC Simulations 
to Construct Distributions of State Trajectories
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���� High computational cost and inconvenient for analysis/control

Q: Could there be a better way, at least for some nanosystems?



Potential State 

Standard Approach is to use KMC Simulations 
to Construct Distributions of State Trajectories
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���� High computational cost and inconvenient for analysis/control

Q: Could there be a better way, at least for some nanosystems?



Structure of Chemical Master Equation

• Chemical Master equation:

• Linear time-varying system:
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d
– Probabilities stacked into a

single state vector x(t)

– The chemical kinetic, adsorption and desorption constants, 
diffusion coefficients, and equilibrium constants collected 

into the vector θθθθ

– Transition rates collected into the matrix A(t;θθθθ) that depends 

on temperature, external species concentrations, etc.

– A(t;θθθθ) is highly structured for most nanoscale systems
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• Chemical Master equation for nucleation in a nanodroplet:

where

[ ]1
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κ −= − =

Pn(t) = probability that population size N(t) has the value n at time t

κ(t) = time-varying probability of nucleation = f(nucleation rate, V(t))

Example: Crystal nucleation within nL droplets

tsat

tind

• Use probability generating function* to generate analytical solution

• Have applied analytical model to identify nucleation kinetics under 
operating conditions very difficult to achieve in other systems

• Also used to quantify uncertainties and gain insights into mechanisms

κ(t) = time-varying probability of nucleation = f(nucleation rate, V(t))
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L. M. Goh, K. J. Chen, V. Bhamidi, G. He, N. C. S. Kee, P. J. A. Kenis, C. F. 
Zukoski, and R. D. Braatz. Crystal Growth & Design, 10:2515-2521, 2010

* D. G. Kendall, J. Roy. Stat. Soc. Ser. B, 
11:211-229, 1949



Equation must satisfy the PDE (match each term):
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Chemical Master equation:

Solution via a probability generating function
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This CME is easy to solve by other methods; 
PGFs also applies to systems with two-way 

interactions



Example: Single-molecule carbon nanotube 
sensor arrays
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Reuel, R. D. Braatz, and M. S. Strano. J. Chem. Phys., 135:art no. 084124, 2011



Example: Single-molecule sensor model

e-

Excitation

NO

Decay

NO

Decay

Full Model Simplified Model

• Finite constant number of uniform segments

• Each segment is independent

• A segment with NO does not fluoresce

• A segment without NO fluoresces

• Only one NO can bind to each site

• Don’t consider size of the intensity change

Fluorescence

H H

e
h+

Decay Decay

D. M. Harrah and A. K. Swan. ACS nano, 5:647-655, 2011

NO NO

Decay

Quenching depends on the 
action of single molecules

(DNA not shown to simplify figures)



Example: Single-molecule sensor arrays

• Chemical Master equation with use of 

equivalent classes (good)
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Z. W. Ulissi, J. Zhang, A. A. Boghossian, N. F. Reuel, S. F. E. Shimizu, R. D. Braatz, and M. S. Strano. J. Phys. Chem. Lett., 
2:1690-1694, 2011; A. A. Boghossian, J. Zhang, F. T. Le Floch, Z. W. Ulissi, P. Bojo, J.-H. Han, J.-H. Kim, J. R. Arkalgud, N. 
F. Reuel, R. D. Braatz, and M. S. Strano. J. Chem. Phys., 135:art no. 084124, 2011



• Reformulate in terms of discrete population 

distributions (better)

Example: Single-molecule sensor arrays

• Solution still conforms to the Chemical Master eqn.



Example: Single-molecule sensor arrays

• First parts of the solution in Siegert, 1949 
(possibly earlier in the Markov Chain literature)

• The solution is a discrete convolution of time-
varying binomial distributions (from solving ODEs)

• Relevant literature:• Relevant literature:

• A. J. F. Siegert. On the approach to statistical equilibrium. Physical Review, 

76:1708-1714, 1949

• I. M. Krieger and P. G. Gans. First-order stochastic processes. J. Chem. Phys., 

32:247-250, 1960

• D. T. Gillespie. The Chemical Langevin and Fokker-Planck equations for the 

reversible isomerization reaction. J. Phys. Chem. A, 106:5063-5071, 2002

• T. Jahnke and W. Huisinga. Solving the chemical master equation for mono-

molecular reaction systems analytically. J. Math. Biology, 54:1-26, 2007



Example: Single-molecule NO sensor arrays

• Comparison to experimental data:

Z. W. Ulissi, J. Zhang, A. A. Boghossian, N. F. 
Reuel, S. F. E. Shimizu, R. D. Braatz, and M. S. 
Strano. J. Phys. Chem. Lett., 2:1690-1694, 2011



Analytical solution enables the answering of many 
fundamental and practical systems questions

• How to optimally estimate adsorption rate 

constants (and local NO concentrations) for 

2D carbon nanotube sensor arrays? 

• What is the uncertainty in the parameter estimates?

• How much of the variance in sensor data is 

intrinsic vs. other sources?

• What is the best achievable state estimation and 

feedback control performance?



Maximum Likelihood Estimation (MLE)

���� Analytical solution makes it possible to derive an analytical 

expression for the maximum likelihood estimates

• Ignoring the specific 
stochastic nature can give 
wrong results

• Estimate obtained by 
averaging results of KMCs 
was off by a factor of 8was off by a factor of 8

• Analytical expressions for 
uncertainty in the parameters, 
intrinsic variation vs. other 
sources

• Enables 2D estimation & 
control (w/Jay H. Lee)*

Z. W. Ulissi, J. Zhang, A. A. Boghossian, N. F. Reuel, S. F. E. Shimizu, 
R. D. Braatz, and M. S. Strano. J. Phys. Chem. Lett., 2:1690-1694, 2011

* H. Jang, K.-K. K. Kim, J. H. Lee, and R. D. Braatz. 
Fast moving horizon estimation for a distributed 
parameter system. 12th International Conference on 

Control, Automation and Systems, Jeju Island, 
Korea, Paper TA01-2, October 17-21, 2012. 



1. High state dimensionality and inherent stochasticity
of molecular events

� Analytically solve Chemical Master equation by 
exploiting structure of interactions between events

(i) Probability-generating functions

(ii) Reformulation as discrete population balance 

Addressing Systems & Control Challenges

(ii) Reformulation as discrete population balance 
equations

(iii) Exploiting of symmetries (Z. W. Ulissi, M. C. Molaro, M. S. Strano, and R. D. 

Braatz. Proceedings of the American Control Conference, Montreal, Quebec, pp. 1-8, 2012; J. G. 

VanAntwerp, A. P. Featherstone, B. A. Ogunnaike, and R. D. Braatz. Automatica, 43:191-211, 2007)

(iv) Linear time-varying dynamical systems theory

� Greatly facilitates dynamic analysis, experimental design, 
parameter & state estimation, optimal control, …

� Still need more theoretical approaches



1. High state dimensionality and inherent 
stochasticity of molecular events

Q: How do we formulate tractable approaches to 
address systems with these characteristics?

2. Sparsity of on-line measurements available for 
process identification

Typical Challenges, and Some Questions

process identification

Q: How do we abstract the most information from the 
data, and redesign systems to obtain more data?

Some Approaches:

���� Employ high-throughput NEMS/MEMS devices

���� Instead of filtering away the noise, exploit it 



2. Employ high-throughput NEMS/MEMS devices 
to resolve sparsity of on-line measurements

144 measurements for each chip: optical + x-ray

Image courtesy 
of Paul Kenis



2. Employ high-throughput NEMS/MEMS devices 
to resolve sparsity of on-line measurements

Pneumatic
valves

(closed in rest)

L. M. Goh, K. J. Chen, V. Bhamidi, G. He, N. C. S. Kee, P. J. A. Kenis, C. F. Zukoski, 
and R. D. Braatz. Crystal Growth & Design, 10:2515-2521, 2010

Photo courtesy 
of Paul Kenis



Mixing Array for 6 Wells

Pneumatic
Valves

(closed in rest)

Photo courtesy 
of Paul Kenis



Introducing Precipitant A

Photo courtesy 
of Paul Kenis



Introducing Precipitant B

Photo courtesy 
of Paul Kenis



Introducing Protein

Photo courtesy 
of Paul Kenis



Empty Mixtures into Wells

Photo courtesy 
of Paul Kenis



Example Application: Lysozyme-NaCl-H2O System 

Estimate nucleation kinetics from fitting CDF for a single 
experiment condition (exps. repeated in parallel) 
���� used the “noise” to identify model parameters!

Parameter estimates:

Cumulative distribution
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Parameter estimates:

A = 2.2×105, B = 9.1

See references for many 
more applications:
• L. M. Goh, K. J. Chen, V. Bhamidi, G. He, N. 

C. S. Kee, P. J. A. Kenis, C. F. Zukoski, and 

R. D. Braatz. Crystal Growth & Design, 

10:2515-2521, 2010

• K. Chen, L. M. Goh, G. W. He, V. Bhamidi, P. 

J. A. Kenis, C.F. Zukoski, and R. D. Braatz. 

Chem. Eng. Sci., 77:235-241, 2012
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1. High state dimensionality and inherent 
stochasticity of molecular events

Q: How do we formulate tractable approaches to 
address systems with these characteristics?

2. Sparsity of on-line measurements available 
for process identification

Typical Challenges, and Some Questions

for process identification

Q: How do we abstract the most information from the 
data, and redesign systems to obtain more data?

3. Sparsity of manipulated variables available 
for process identification and control

Q: How do we redesign systems to have more 
manipulated variables, and formulate tractable 
approaches to dealing with some of these new 
modes of manipulation?



3. Create new dof to resolve sparsity of 
manipulated variables – actuate via surfaces

Nano/Microfluidics Chip:

144 crystallization wells, 5-30 nL each

Control layer on

Metering + Mixing layer

4 Layers:

54

Crystallization wells and
evaporation channels

Layer with through-holes 

Metering + Mixing layer

Active control of evaporation and 
condensation rates by 

manipulation of external humidity

S. Talreja, S. L. Perry, S. Guha, V. Bhamidi, C. F. Zukoski, and P. J. A. Kenis. J. Phys. Chem. B, 114:4432-4441, 2010



3. Create new dof to resolve sparsity of 
manipulated variables – actuate via surfaces
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Photo courtesy 
of Paul Kenis 

S. Talreja, S. L. Perry, S. Guha, V. Bhamidi, C. F. Zukoski, and P. J. A. Kenis. J. Phys. Chem. B, 114:4432-4441, 2010



3. Create new dof to resolve sparsity of 
manipulated variables – actuate via surfaces

CP/CS = 10 mg/(mL-M)

CP0 = 20 mg/mL

CS0 = 2 M

500 µm

RNase A

500 µm500 µm

Without Control

500 µm

With Control

CP0 = 5 mg/mL

Bacteriorhodopsin
(a membrane protein; 

very difficult!)

Photos courtesy 
of Paul Kenis 

S. Talreja, S. L. Perry, S. Guha, V. Bhamidi, C. F. Zukoski, and P. J. A. Kenis. J. Phys. Chem. B, 114:4432-4441, 2010



3. Create new dof to resolve sparsity of 
manipulated variables – actuate via external fields

• Approach: actuate through 
external fields

• Photograph shows the use of 
an external magnetic to focus 
nanoparticles to a tumor

• A lot of research is focused on 
precise control of the motion precise control of the motion 
of particles and the formation 
of nanostructured materials 
(e.g., Paul Barton, George 
Stephanopoulos, Ben Shapiro)

Photo courtesy of A.S. Lübbe et al., Cancer Research, 
56:4686-4693, 1996; A. Sarwar, A. Nemirovski, and B. 
Shapiro, Journal of Magnetism and Magnetic Materials, 
324:742-754, 2012



3. Create new dof to resolve sparsity of 
manipulated variables – actuate via external fields

• Use of charges above 
or below a surface to 
control of the motion 
of particles to form 
nanostructured
materials

• Evolution of control 
points to construct a 
2D nanostructure

Image from E. O. P. Solis, P. I. Barton, 
and G. Stephanopoulos. Ind. Eng. 
Chem. Res., 49:7746-7757, 2010



3. Create new dof to resolve sparsity of 
manipulated variables – embedded actuation

• Approach: embed control into the system

• Release molecules in response to local pH, light, pressure, 
chemical concentration, temperature, …

Images from W. M. Saltzman and W. L. Olbricht. Nat. Rev. Drug Disc., 1:177-186, 2002 



3. Create new dof to resolve sparsity of 
manipulated variables – embedded actuation

• Example of design of embedded 
particles to release molecules in
response to local concentration

• Comparison of reference and

achieved 3D isosurfaces 

for the concentration for the concentration 

of a signaling molecule 

released from polymer 

spheres within a 

tissue construct

M. Kishida, D. W. Pack, and R. D. Braatz, Proceedings of the American Control Conference, pp. 4361-4366, 2010  
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for process identification

Typical Challenges, and Some Questions

for process identification

Q: How do we abstract the most information from the 
data, and redesign systems to obtain more data?

3. Sparsity of manipulated variables available 
for process identification and control

Q: How do we redesign systems to have more 
manipulated variables, and formulate tractable 
approaches to dealing with some of these new 
modes of manipulation?



Some more questions

• Approach: embed control into the system

• Release molecules in response to local pH, light, pressure, 
chemical concentration, temperature, …

• Q: How to handle the large number of dofs? 

�E.g., a discretization approach for the design and 
placement of nanoparticles in a tissue construct would 
require 100×100×100×100×10=109 design variablesrequire 100×100×100×100×10=109 design variables

∂
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stochasticity of molecular events

Q: How do we formulate tractable approaches to 
address systems with these characteristics?

2. Sparsity of on-line measurements available 
for process identification

Typical Challenges, and Some Questions

for process identification

Q: How do we abstract the most information from the 
data, and redesign systems to obtain more data?

3. Sparsity of manipulated variables available 
for process identification and control

Q: How do we redesign systems to have more 
manipulated variables, and formulate tractable 
approaches to dealing with some of these new 
modes of manipulation?



Summary

• Discussed control of systems in which key phenomena 
occur at the nanoscale

• Discussed some approaches to address the challenges:

– Fast KMC+ or direct analytical or numerical solution of the 
Chemical Master equation (by exploiting model structure)

– Employ high-throughput NEMS/MEMS (to generate data)– Employ high-throughput NEMS/MEMS (to generate data)

– Exploit information from the intrinsic process noise

– Create new degrees of freedom for control (surfaces, 
external fields, and embedded actuation)

• Illustrated approaches on a variety of applications

• Model identification, estimation, and control designs 
have been validated in experiments



Outline

• Introduction

• Challenges and questions

• Some approaches• Some approaches

• Some more questions



Structure of Chemical Master Equation

• Chemical Master equation:

• Linear time-varying system:

( , )
( , ) ( , ) ( , ) ( , )

dP t
W P t W P t

dt σ σ

σ
σ σ σ σ σ σ

′ ′

′ ′ ′= −∑ ∑

d
– Probabilities stacked into a

single state vector x(t)

– The chemical kinetic, adsorption and desorption constants, 
diffusion coefficients, and equilibrium constants collected 

into the vector θθθθ

– Transition rates collected into the matrix A(t;θθθθ) that depends 

on temperature, external species concentrations, etc.

– A(t;θθθθ) is highly structured for most nanoscale systems

( ) ( ; ) ( )
d

x t A t x t
dt

θ=
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Some more questions

Q: How to develop theory and algorithms for the 
identification, estimation, and control of 

– Nanoscale systems

– Multiscale systems, e.g.,

( ) ( ; ) ( );
d

x t A t x t
dt

= θ ( ) ( ( ); ) ( )
d

x t A u t x t
dt

= θ

Probabilities are computed in the CME model, but usually 
measure result of a single realization; w/different stochasticity

���� Would increase theoretical confidence (by directly analyzing 
the CME instead of low-order fit), & provide real-time solutions

( ) ( ( ); ) ( )

( ( ), ( ); ) 0 (IPDAE system)

d
x t A y t x t

dt

L y t u t

=

=

θ

ϕ



Some more questions

Q: How to develop theory and algorithms for the 
identification, estimation, and control of 

– Nanoscale systems

– Multiscale systems, e.g.,

( ) ( ; ) ( );
d

x t A t x t
dt

= θ ( ) ( ( ); ) ( )
d

x t A u t x t
dt

= θ

Q: How to best deal with uncertainties vs. inherent stochasticity
(largely non-Gaussian)? Direct application of Markov Chain 
Monte Carlo & Polynomial Chaos Expansions or something 
better able to exploit the model structure?

( ) ( ( ); ) ( )

( ( ), ( ); ) 0 (IPDAE system)

d
x t A y t x t

dt

L y t u t

=

=

θ

ϕ



Some more questions

• Q: How do we educate our nanoscale collaborators to 
transition our systems engineering methods into practice?

• Partial solution: serve on nano PhD committees

• Partial solution: jointly supervise graduate students and 
postdocs to solve their nanosystems problems

• Partial solution: Courses; MIT graduate students take

– Numerical methods (probability, statistics, Chemical Master Eqns., 
KMC simulation, population balance models, IPDAEs) – ALL 

– Systems engineering (structural analysis, dynamic modeling, 
steady-state and dynamic simulation and simulators, optimization, 
DAEs, SPC,  process control) – most graduate students take this

����Students gain understanding and learn the same language as 
process systems engineers
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