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What is Advanced Manufacturing?

* “The use of _3:o<m:<m ﬁmo::o_omv\. to improve products or
processes” (wikipedia)

* “A high rate of technology adoption and ability to use that
technology to remain competitive and add value” (CTI

Reviews)

« “Manufacturing that entails rapid transfer of science and
technology into manufacturing products and processes”
(White House 2014)



Advanced Manufacturing Terminology
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» Cyber-physical systems
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* Industry 4.0

These areas contain many systems & control problems;

this talk focuses on process systems engineering




Industry 4.0, aka Smart Factory

“the current trend of automation and data exchange
that includes cyber-physical systems, Internet of
Things, cloud computing, and cognitive computing”

m:.m: services “

Condition monitoring
Predictive maintenance

§ 31
e (e
Online services

Remote
maintenance

Intelligent .
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ata exchange !
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4 research
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Individualisation

Smart machine

Traceability

Smart production

Dirk Decker, VDMA



Outline

* Recent Trends in Process Manufacturing Systems

* Prototype Process Manufacturing Systems

* Process Systems Design
* Process Control Theory

* More Open Research Problems



First Continuous Pharma Manufacturing Plant

S. Mascia et al. End-to-end continuous manufacturing of pharmaceuticals: Integrated synthesis,
purification, and final dosage formation. Angewandte Chemie, 52(47):12359-12363, 2013; Research
Highlight in Nature, 502:274, 2013

A. Mesbah, J. Paulson, R. Lakerveld, R.D. Braatz. Model predictive control of an integrated
continuous pharmaceutical manufacturing pilot plant. Org. Process R&D, 21(6):844-854, 2017

Plant-wide
control system
constructed
from first-
principles
Reduced
production
costs by ~50%

Met all purity
specs in 2012




Integrated and Scalable Cyto-Technology

(InSCyT) Biomanufacturing Platform, V1.0

Upstream Multivariate

Analytics Model

'Real-Time OK for
Process Release
Data

mﬁmﬁ_m Yeast . L
Media [noculum

 ——

I

. On-line Plant
Perfusion Control

Crude Product Hold Tanks E

Final
Product

Made 2 drug
products in 2015

Purified Product for
Quality Testing

Polishing Membrane #1 Polishing Membrane #2
Tanks

Affinity

Polishing Polishing

Chromatography Membrane #1 Membrane #2 Waste
(i HMDI.%‘? "
m\twm Waste Waste Waste Nkl
Membrane
Downstream

A.E. Lu et al. (2015). Control systems technology in the advanced manufacturing of biologic drugs. IEEE Conf. on Control Appl., 1505-1515.



Microscale Controlled Cell Culture
75

K.S. Lee and R.J. Ram. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous
culture. Lab on a Chip, 11(10), 1730-1739, 2011
Moo Sun Hong et al. Model-based optimal design and control of microbioreactors, in preparation



Automated System for Knowledge-based
Continuous Organic Synthesis

* A fully automated molecular synthesizer

that produces, purifies, and characterizes* = "1 = e
e Includes e Naigad |-
— knowledge-based computational tools | R | m——
for reaction pathway & process flow EL L e
diagram (PFD) prediction - =g DT

o Al
— process automation and control
— interconnected fluidic modules for
continuous synthesis, in-line
characterization, purification, and
formulation

i
w7
o
s

» Speed the pace of molecular innovation and
provide an accessible synthesis platform for

non-specialists Made 4 drug

. S >

Science, 352(6281):61-67, April 1, 2016

products in 2015

* http://www.darpa.mil/program/make-it



Automated System for Knowledge-based
Continuous Organic Synthesis

* A fully automated molecular synthesizer
that produces, purifies, and characterizes

 Fully automating the PhD control engineer
requires solving many research problems:

—how to optimize startup, when no data
from the system are initially available
for building models for control design
(stochastic hybrid optimization)?

—how to ensure near optimal closed-loop
performance while generating no off-
spec product (stochastic MPC)?

—how to continue to optimize operations
to maximize yield at specified
production rate (self-learning control)?

o
I e
...Ih.
e e i

Science, 352(6281):61-67, April 1, 2016
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Overview of Advanced Process Systems Design

« Greatly increased understanding & optimization of Major Cost Saving (Capex & Opern)

each unit operation, exploiting process intensification SRt Bl pmont  Ftant
deg Short time to the Market

R
gmmmm

» Automated high-throughput
microscale technology for fast
continuous process R&D

High Selectivity

~— et iy v— High Product Purity

Operational Excellence

* Plug-and-play wireless modules
w/integrated control & monitoring
to facilitate deployment

Less waste / by-products

QbD (Quality by Design)

« Dynamic models for unit operations for
automated plant-wide simulation & control design

« Autonomous model-based control technologies
for optimizing operations including startup,
changeover, and shutdown

M.S. Hong et al., Comput. Chem. Eng., 110:106-114, 2018
pi-inc.co, www.pharyx.com/technology.html, Angew. Chem. Int. Ed., 52(47):12359-12363, 2013




Design of Control Systems l/
Based on “Virtual Plant”

Empirical Understanding

« Constructed from first-principles
models wherever possible,
grey-box models where necessary

« Highest complexity models used for
the invention and optimization of
process designs and development

« Lower complexity plant-wide model runs
In parallel with process operations,
for process control and quality and
equipment condition monitoring

11

» Goal is “right first time”

14



Plant-wide Control Approach

Multivariate

Analytics o

Upstream

System Characteristics W CRRT
« Multi-product manufacturing plant ~
» Continuous & discrete operations

* Dynamics, nonlinearities, distributions,
uncertainties, constraints, disturbances

* No SS & must align with regulatory

OK for
Release

=R
/ / J *O:-__:m Reactor

Perfusion
Crude Product Hold Tanks

Control

Polishing Membrane #1  Polishing Membrane #2
Tanks Tanks

I\;

Purified Product for
Quality Testing
Polishing
Membrane #2 Waste
. ~ UF/DF

Polishing
Membrane #1

Elute

requirements (no off-spec product)

Downstream

Approach adapted from the chemical industry

 Employ systematic & modular design of plantwide control strategies for
large-scale manufacturing facilities (Stephanopoulos/Ng, JPC 2000)

* Employ algorithms that can handle nonlinearities, distributed states,
unstable zero dynamics, time-invariant probabilistic uncertainties,
constraints, time delays, and mixed continuous-discrete operations

A.E. Lu, J.A. Paulson, N.J. Mozdzierz, A. Stockdale, A.N. Ford Versypt, K.R. Love, J.C. Love, R.D. Braatz. Control systems technology
in the advanced manufacturing of biologic drugs. Proc. of the IEEE Conference on Control Applications, 1505-1515, 2015 15



Plant-wide Control Approach

Upstream Multivariate

« Build first-principles dynamic models &8 | | .
for each unit operation (UO)

=R
/ / J *.O:-__:m Reactor

Perfusion
Crude Product Hold Tanks

Control

 Design control system for each UO
to meet “local” material attributes

Polishing Membrane #1  Polishing Membrane #2
Tanks Tanks

« Evaluate performance in simulations "= S MT
and propose design modifications Downstream
as needed

Affinity

Chromatography OISTINg

Membrane #1

Membrane

 Implement and verify the control system for each UO

 Design and verify plantwide control system to ensure that the
product quality specifications are met

A.E. Lu, J.A. Paulson, N.J. Mozdzierz, A. Stockdale, A.N. Ford Versypt, K.R. Love, J.C. Love, R.D. Braatz. Control systems technology
in the advanced manufacturing of biologic drugs. Proc. of the IEEE Conference on Control Applications, 1505-1515, 2015 16



What is Available and What is Needed In
Advanced Process Control Technology

* The best commercial plant simulation software handles nonlinearities, time
delays, unstable zero dynamics, constraints, mixed continuous-discrete
operations, and some uncertainty analysis methods (e.g., S;, Monte Carlo)

Ps@ (Waspentech RESE}

* More advanced uncertainty analysis tools can be
wrapped around or integrated into such software

6000

5000

4000
Y
o 3000

P

2000;

1000¢

@.m 1.6

« Distributed states facilitated by moment analysis,
transforms, characteristics, finite volume methods

» Research needed on automating controller design,
reducing on-line computations, proving stability,
and optimizing startup/changeover/shutdown

— especially for time-invariant probabilistic uncertainties
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Common Characteristics of Advanced Process Systems

* High to infinite state dimension

* Model uncertainties: non-LFT, TIl, p(6)
* Time delays

* Unstable zero dynamics

 Actuator, state, and output constraints
« Stochastic noise and disturbances

 Phenomena described by algebraic, ordinary and
partial differential, and integral equations

* Mixed continuous-discrete operations
* Nonlinearities

Research needed on the analysis, design, and control of

process systems that have all of these characteristics

19



Worst-case vs. Probabilistic Formulation

0,0
P, 6) Probabilistic view has
S more information

* Min-max optimizes highly unlikely worst-case & is conservative

« Stochastic approach exploits the probabilistic information,
resulting in much better performance for almost all 6

20



Time-invariant Parameter Uncertainty Estimation

prior parameter estimates

* Has been mUU__mn_ sihce Experimental Bayesian

the mmq._v\ 1970s Data Parameter
Collection Estimation

| Multiple
experimental [EESSIIE] C:om.zm._:J\ Models
Experimental descriptions

Design throughout

constraints

Model
Selection

 Algorithms and
computers are faster

* So p(B) can be assumed
to be available

Is model
accurate?

NO

p(0)

Control, 17, 229-240, 2007 Y

Braatz et al., Journal of Process



Common Characteristics of Advanced Process Systems

* High to infinite state dimension

* Model uncertainties: non-LFT, TIl, p(6)
* Time delays

* Unstable zero dynamics

 Actuator, state, and output constraints
« Stochastic noise and disturbances

 Phenomena described by algebraic, ordinary
and partial differential, and integral equations

* Mixed continuous-discrete operations
* Nonlinearities

Research needed on the analysis, design, and control of

process systems that have all of these characteristics
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 Actuator, state, and output constraints
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 Phenomena described by algebraic, ordinary
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* Nonlinearities

It is instructive to compare to algorithms that are able to

simultaneously address most of the above characteristics
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Developing Stochastic Control Algorithms on
Wiener’'s Polynomial Chaos Theory (PCT)

Replace mapping between uncertain system variables with a series of
orthogonal polynomial functions of the model parameters

L
w(0)~2 ) a®, (0)

a, —> Expansion coefficients

® (0) —> Multivariate polynomials made
of univariate polynomials in 6,

Polynomials from Askey-scheme achieve optimal convergence

PDF Askey polynomial [ ©,=1
Beta Jacobi D =0

O, =60"-1

Gaussian Hermite

Uniform Legendre

\
Expansion must be truncated for practical reasons

 Coefficients can be computed from collocation, regression, Galerkin

25



Polynomial Chaos Expansions Quantify State PDFs
Multivariable PDF of 6

Captures time evolution of state PDF

K. Kim et al., IEEE Control Systems, 33(5):58-67, 2013

26



Efficient Moment Evaluation

» Orthogonality of polynomials enables efficient
moment evaluation using PCE coefficients

Aexmvue j va =1 Aex& v = Weight is PDF of 6

0 if i # \

Inner product  (A(6), g(6)) = ..‘i%vm%v\%&%

Linear

Expected value  E[y(0)]=(y(0),1) =(y(6),®,) H

Quadratic

| > R Y , can use to
Variance  Var|y(0)]= ME.%S v reduce online

control costs

K. Kim et al., IEEE Control Systems, 33(5):58-67, 2013



Galerkin Projection (when applicable)

 For linear index-1 DAEs, approximate states with PCE
and project error onto basis functions to obtain

MX(¢) = AX(¢) + Bu(f) + D; Y(7) = CX(¢)
Tmu at, o QSH ?ﬂ B @SH

* Map u(f) to Y(t) has similar structure as u(t) to y(t)
» Exploit in PCT-based optimal control formulations
— matrix inequalities — matrix inequalities
— step response — step response

J.A. Paulson et al., IEEE CDC, 2802-2809, 2014

28



Example Receding Horizon Formulation

Solve an optimal control problem at every sampling instance ¢,

wﬂ% J((0), &Q\vv./_:bcﬁm Outputs
subject to: \ ~ States
. Model A\ x(1) = f(x(2), u(?)) typically n, > s_:
| (1) = g(x(2), u(?)) Update based on
-+ Initial condition  x(#;) H»Q\L < measurements

|
- Constraints n(x(t),u(t)) <0, telt,, b, +1p]




Fast PCT-based MPC Algorithm as QP

\. ny =n,(L+1)<<n, typically

Y(k) = MMEAT;&% n); S, =

i=1

/

-

~—

Au(k) = u(k) - u(k —1)

Holds for stable systems, i.e., S, = S, .,

S1,1k

821,k

%5 Lk

S,k T Sk
S22k 7 Son ok
,wxfwv\« %5? k
~ ms

{
Output PCE coefficients are linear in Au
\
k+p
J= > E[y; -t )] B[y 0)=re) ]+ i&?? 0)=r(t)]
i=k+1 -
_._:mmﬁ in Au

Dcm%m:o in Au

—> Quadratic program (QP)

30



Ex: Continuous Pharmaceutical Manufacturing Plant

Block A

Synthesis and purification of
intermediate compound

Block B

Synthesis and purification of Active
Pharmaceutical Ingredient (API)

Block C

Solvent removal and tablet
manufacturing

Dilution
tank 2

Coating materia

Coated
E

[T \Tablets|
Coating

31



Ex: Continuous Pharmaceutical Manufacturing Plant

Flowsheet for plant designed and constructed at MIT

Detailed first-principles model of the pilot plant has
— 3 outputs, 9 inputs, and 7613 states!

— Outputs: production rate, APl dose, and impurity content

Used fast (<1s) PCT-based MPC to suppress adverse
effects of uncertain kinetic parameters on operation

Lower-level regulatory controls (e.g., level and recycle)
used to ensure stable operation®

32



Results: Setpoint Change in the Production Rate

1.015

1.01

0.995

Normalized API Dosage

0.99

0.985

0.98

-
o
o
O
T

 §

|

T

; ! e

ast SMPC closer to
specification — less variation

L J

0

10 20 30 40 50 60 70
Time [hr]

200 closed-loop simulations — each has different parameter values

J.A. Paulson et al., Fast stochastic model predictive control of high-dimensional systems. IEEE CDC, 2802-2809, 2014 33



Results: Setpoint change in Production Rate

100 - Do | H - .
gof .o .} PCT-based
5 eod i Rt . § MPC 25x lower
3 B ~_.-Nominal variance
£ O . _NPC 8§ o
50
Normalized API 0.985 20 Time [hr]

200 closed-loop simulations, each having different parameter values

34



Common Characteristics of Advanced Process Systems

* High to infinite state dimension

* Model uncertainties: non-LFT, TIl, p(6)
* Time delays

* Unstable zero dynamics

 Actuator, state, and output constraints
« Stochastic noise and disturbances

 Phenomena described by algebraic, ordinary
and partial differential, and integral equations

._<__meoo:ﬁ_:cocm-a_moﬁmﬁmocmﬂmﬁ_osm v
* Nonlinearities

Research needed on the analysis, design, and control of

systems that simultaneously addresses all of these properties

35
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More Open Research Problems

* Practical algorithms for dealing with time-invariant
probabilistic uncertainties have been published

— Algorithms show improved performance over
robust and nominal control in specific case studies

* Theoretical issues are largely unresolved

— H,- and H_-control algorithms are available with proven
stability and performance for unconstrained systems

— Stability, feasibility, mismatch in PDFs, and truncation error
associated with PCEs not yet well resolved theoretically

* Many papers have incorporated chance constraints into
MPC without any guarantee of their satisfaction by the
closed-loop system (NMPC 2015)

— Useful control theory for stochastic MPC is still an open field

37



Comments on More Open Research Problems

 Recommend balancing practicality of control algorithms
with rigorous theoretical guarantees

* Analysis and design methods for arbitrarily fast
time-varying (TV) parameters are much easier to derive

* Distributed parameter and mixed continuous-discrete
(aka hybrid) systems with probabilistically uncertain
time-invariant parameters are fairly unexplored

— Statement holds for analysis, design, monitoring, control
— Important due to being common in process manufacturing
* New better ways to handle nonlinearities

— One approach is to employ polynomial methods
(e.g., Paulson et al., Handbook of MPC, 2018)

38
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