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Quality by Design (QbD)

@ The FDA encourages the pharmaceutical industry to design (and validate)
their processes for a range of process conditions that results in acceptable
products for the patient: Design Space

[ICH Guideline Q8 on Pharmaceutical Development, 2004]

[, Need to understand and quantify complex interactions between material,
processes and products
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Quality by Design (QbD)

@ The FDA encourages the pharmaceutical industry to design (and validate)
their processes for a range of process conditions that results in acceptable
products for the patient: Design Space

[ICH Guideline Q8 on Pharmaceutical Development, 2004]

[, Need to understand and quantify complex interactions between material,
processes and products

Robust Approach:

|dentify all possible combinations of
process parameters that yield acceptable
product quality for all possible variations
in raw materials

Design Space

@ Carry out a well-designed set of
experiments (DOE)

Knowledge Space
@ Use response surface methodology (DOE space)
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Use of Mechanistic Models in QbD

Advantages of a Model-Centric Strategy:

@ Ability to study of a very large number of parameters simultaneously

@ Ability to adjust operating conditions to compensate for materials variability
leading to larger design space (robust — reactive)

L Empowered by mathematical tools developed by the PSE community
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Use of Mechanistic Models in QbD

Advantages of a Model-Centric Strategy:

@ Ability to study of a very large number of parameters simultaneously

@ Ability to adjust operating conditions to compensate for materials variability
leading to larger design space (robust — reactive)

L Empowered by mathematical tools developed by the PSE community
But...

@ Need to account for and carefully quantify modeling inaccuracies, alongside
other types of uncertainty

Organic Process

Research &
ubs.acs.org/OPRD

Development A

Definition of Design Spaces Using Mechanistic Models and
Geometric Projections of Probability Maps
Salvador Garcia-Muifioz,* Carla V. Luciani, Shankar Vaidyaraman, and Kevin D. Seibert

Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly & Company, 1400 West Raymond Street,
Indianapolis, Indiana 46221, United States
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Example: Suzuki Coupling Model

Gas-liquid reaction system in batch mode:

Pd(ll)
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Example: Suzuki Coupling Model

Gas-liquid reaction system in batch mode:
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Quality Attributes:

Max. amount of unreacted
SM2 (reaction completion)

Max. amount of produced
Imp1l (downstream purif.)

Process Parameters:
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ratio of starting materials
reaction volume

solvent composition
reaction temperature
catalyst loading

initial Pd speciation

O level in head-space
reaction time

potassium phosphate
charged amount
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Example: Suzuki Coupling Model

Kinetic Model Formulation:

¢y

HPAOWD _ (i paoisma) - kApa@io,, "
+ kg[AS][A4] + k[Z3]}V
DIV — i fpao) 0,1, — kPAI[A4}V

yozP = [OZJL,satHOZ

j=water, THF O,, water

1 HOpwater
= Infox e + xTHFH
0O,,THF

d{[0,].V}
dt

Ho, tnr
Ho, = exp[ Z xlnHg ; — xTHFln[H E

= {ksll([OZ]L,sat - [OZ]L)}V

dH{[sM2]v}

5 - ka[Pd@]sM2]}v

H{[z1]V}
dt

= {k,[PA(0)][SM2], — ky[Z1][OH T}V

B. Chachuat (Imperial College)

)
)

*)

©)

(6)

™

d{[Z2]v}
dt

d{[Z3]v}
dt

d{[A4]V}
dt

— kg[PA(I)][A4] — ko[AS][A4]}V

d{[As]v}
dt

d{[sM1]v
dt
d{[Imp1]V}
dt
d{[K;PO,]V}
dt

d{[K,HPO,]V}
dt

d{[HBO, IV}
dt

d{[oH"]V}
dt

+ k) [HBO;™]

{30,V
dt B

d{{r1]v}
dt

Uncertainty in Dynamic Processes

= {k,[Z1][OH™] — k,[A4][Z2]}V
= {k,[A4][Z2] — Kk [Z3]}V

= {ko[SM1] — k,_s[A4] — k,[A4][Z2]

= (k[PA()][A4] — K [A4][AST}V
bk sMI] + kA4l
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(14)
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(1)

(16)
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Example: Suzuki Coupling Model

Kinetic Model Calibration:

60

oy —a— 15,=2500 ppm
40 —o— Y0,=100 ppm

Residual SM2 (mol%)
w
o
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time (min)
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Uncertainty in Dynamic Processes

parameter

Suzuki Coupling®

ket (L mol™! min™")

kss_,ef (L mol™! min_l)

Kegrer (L mol™! min™")

ksS,ref (min_l)

kiset (min~")

Keq,é = ksG,ref/ ks—é,ref (—)

K7 e (L% mol™® min™!)

keg e (L mol™! min™")

Ko ref (L mol™ min™)

k1oe (min~")

Keq,m = kle,ref/k —10,ref (L_l mol)
ksll,ref (mm_l)

Keq,u = ksll,ref/k —11,ref (L—l mol)

ks 12,ref

value

1.74 x 10?
7.14 x 10°
437 x 10°
249 x 10°
2.94
2.08
1.04 x 10'
7.54
3.84 X 10?
5.50
3.96 X 1072
2.34
5.00 X 107*
2.74 x 1073

UAT) = ke exp(—E,/R(1/T — 1/T,)) with T = 303.15 K;
activation energies are as follows (kJ/mol): E,, = 274, E;3 = 0.0, E,, =
15.3, Eyg = 224, Eyg = 300, E, 0 = =65, E,; = 00, E,5 = 20.1, B, =
0.0, Ey 19 = 30, E, oq10 = 50, E,py = 30.0, E, 1y = 139.0, and E, 1, = 15.0.
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Example: Suzuki Coupling Model

Design space estimated via griding of process parameters and running
numerous simulations:

Reaction temperature (°C)

0.0025
0.0020
0.0015

0.0025
0.0020
0.0015

Oxygen level (ppm)
Equivalent of Catalyst

0.0025
0.0020
0.0015

100 150 200 250 100 150 200 250 100 150 200 250

Reaction Time (min)
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Example: Suzuki Coupling Model

Design space estimated via griding of process parameters and running
numerous simulations:

Reaction temperature (°C)

| 22C | 32C | 40C | 52C | 64C |

How might we use PSE methods and tools to:

@ Precisely characterize the boundary region of the design
space inside the knowledge space

@ ldentify the largest multi-dimensional box fitting within the
design space

@ Be resilient to the (parametric or structural) modeling
uncertainty

@ Guide targeted experiments to confirm / refine the design
space boundary

' | ST S SE—

T T T T
100 150 200 250 100 150 200 250 100 150 200 250

Reaction Time (min)
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Computational Systems Biology

BIOLOGICAL ROBUSTNESS

Hiroaki Kitano

Abstract | Robustness is a ubiquitously observed property of biological systems. It is considered
to be a fundamental feature of complex evolvable systems. It is attained by several underlying
principles that are universal to both biological organisms and sophisticated engineering systems.
Robustness facilitates evolvability and robust traits are often selected by evolution. Such a
mutually beneficial process is made possible by specific architectural features observed in robust
systems. But there are trade-offs between robustness, fragility, performance and resource
demands, which explain system behaviour, including the patterns of failure. Insights into inherent
properties of robust systems will provide us with a better understanding of complex diseases and
a guiding principle for therapy design.

826 | NOVEMBER 2004 | VOLUME 5 www.nature.com/reviews/genetics

@ ldentify and understand the basic architecture for a robust system,
and the associated trade-offs and faults: Reverse Engineering

@ Develop counter-measures, such as targets for new drugs:
Therapeutic Design
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Approaches in Computational Systems Biology

How large a perturbation can a system tolerate before loosing a
specific behavior?

Direct Approach: Inverse Approach:
variation in variation in

model parameters functional behavior

sensitiv.ity mathematical mathematical optimization
anal.y51s e model model “—  techniques
techniques 1 1
change in required
system behavior parameter values

Examples of Qualitative Functional Behaviors:

Oscillation, Bistability, Switch-like activation, Perfect adaptation,
Amplification, etc.
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Example: Covalent Modification Cycle

MAP cascades: a ubiquitous “signaling module™ in Eucaryotes

S
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Example: Covalent Modification Cycle

MAP cascades: a ubiquitous “signaling module™ in Eucaryotes

S

DAE Model:

X7 ey [X)[Px] + kx[X : 5% + di[X* : Py]

1 ax[X][S"] = (kx +dx)[X : S7]

d[X* : Px]
dt

= ax [X"|[Px] — (Kx +dx)[X" : Px]
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Example: Covalent Modification Cycle

MAP cascades: a ubiquitous “signaling module™ in Eucaryotes

S

Can a simple covalent modification cycle
DAE Model: feature both a high gain and switch-like

d[ji I — a%[X*][Px] + kx[X : S*] +d%[X*: Px] activation in a wide operating window?
dX:S* T, — I'=7— nH=6— Ty— I'=7— nH=6—
[ - L ay[X][57] - (kx +dx)[X : 7 , . i
1 —
d[X*: P A o a—]
% — @} [X*)[Px] — (k% +d%)[X* : Px] o1 =
[Xltor = [X] + [X*] + [X : 5]+ [X* : Px] .
[Sltot = [S] + [S*] + [X : S¥] 0.01 -70 20105 2 1 05|02 001 | 100—
[Pchos = [Px] + X" : Px] i -

0.001 0.001 i
0.001 0.01 0.1 1 0.001 0.01 0.1 1
pS/X pS/X
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Trends in Computational Systems Biology

The second wave of synthetic biology:
from modules to systems

Priscilla E. M. Purnick and Ron Weiss

Abstract | Synthetic biology is a research field that combines the investigative nature of
biology with the constructive nature of engineering. Efforts in synthetic biology have largely
focused on the creation and perfection of genetic devices and small modules that are
constructed from these devices. But to view cells as true ‘programmable’ entities, it is now
essential to develop effective strategies for assembling devices and modules into intricate,
customizable larger scale systems. The ability to create such systems will result in innovative
approaches to a wide range of applications, such as bioremediation, sustainable energy
production and biomedical therapies.

410 [JUNE 2009 | VOLUME 10 www.nature.com/reviews/molcellbio

@ First Wave — Development and understanding of basic elements and
modules

@ Second Wave — Integration of basic elements and modules to create
system-level circuitry
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A More Complex Signaling Pathway

Insulin Receptor

B. Chachuat (Imperial College)
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A More Complex Signaling Pathway

lnsuhn Receptor

) SNARE
Glucose Complex
'-' GLUT4

Cav 4 _p855 = v

Flotlllln PTEN / p|3K © x

e g T @ gl es
i e A < SHIP / ‘ Akt SHP2'\ SPTP1B

How might we use PSE methods and tools to:

@ Characterize the stability, oscillations, and other dynamical
properties of such complex systems

@ Control these cellular systems through drugs or genetic
modifications

@ Develop models with suitable algebraic forms for the
reactions and values for the kinetic parameters

@ Estimate time-varying internal states, such as the
concentrations of proteins and other chemical substances,
from input/output experiments

o . )
—— - v
(E&B @& @) | |
Yo
Apoptosis < Transcription Transcription —3» Growth
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Step II: Uncertainty characterization

Step I: System modeling

Step III: Uncertainty propagation

Step IV: Sensitivity, robustness and flexibility analyses




Workflow

Step II: Uncertainty characterization Step I: System modeling Step IIT: Uncertainty propagation
Input Model Output

Step IV: Sensitivity, robustness and flexibility analyses

@ Prediction of Uncertainty:
Characterizing the uncertainty under which a system must be resilient

e external perturbations; uncertain measurement data
e structural / parametric modeling uncertainties
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Workflow

Step II: Uncertainty characterization Step I: System modeling Step IIT: Uncertainty propagation
Input Model Output

Step IV: Sensitivity, robustness and flexibility analyses

@ Prediction of Uncertainty:
Characterizing the uncertainty under which a system must be resilient

e external perturbations; uncertain measurement data
e structural / parametric modeling uncertainties

@ Exploitation of Uncertainty:
Applying methods and tools for design and analysis of resilient systems

e uncertainty quantification; robust design; flexibility analysis; etc
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Uncertainty Descriptions: The Role of Data

Extreme Variability of Data across the Process and Biotechnology Industries
“Big"” data Scarce data

VS
Quantitative data PR Qualitative data and expert knowledge
Precise data PR Noisy data
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Uncertainty Descriptions: The Role of Data

Extreme Variability of Data across the Process and Biotechnology Industries
“Big"” data Scarce data

VS
Quantitative data PR Qualitative data and expert knowledge
Precise data PR Noisy data

Two Main Paradigms for Uncertainty Description in Model Development:

Probabilistic Set-membership

*—@ L2 @
90000

B
90 ® &
-1—e0-0-0—o
| T, d
| geas 1

v
v
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Uncertainty Descriptions: The Role of Data

Extreme Variability of Data across the Process and Biotechnology Industries

“Big"” data e Scarce data
Quantitative data PR Qualitative data and expert knowledge
Precise data PR Noisy data

Two Main Paradigms for Uncertainty Description in Model Development:

Probabilistic Set-membership

*—@ L2 @
o 0 00

o 000 o
0 ® o
-1—00-0- 0o
| T, d
| geas 1

'Y
r

I 1 1

e e !

v

Frequentist inference Bayesian inference Set-membership inference
Determine a fixed value Determine a probability Determine a range of
for the parameters distribution for the consistent parameter values
parameters
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Classical Model Development Framework: Frequentism

How to best use data to validate or invalidate a mathematical model?

ITERATIVE IDENTIFICATION PROCEDURE

e pe——
= [ Batery of [ > IdStrtj'tgtut;?'lt P > Eanklngt of -
S models entifiability . Parameters ;|
E é -------------------------------- : g
8 NO —————————————— b | §
E I : ----------------- : -------------- E s
G Practical i g (I 4
o |} dentifiability w-|  Model
© : Fool §|dent'f;ab.”'t}l§4 Calibration : :
= Validation | ey ieoebome oo .. x I
& or (.x ........... 1
Invalidation | I |————Y— ————— ey e
Yes (!I| Optimal i Practical :||
: I: Experimental .---)f,identiﬁabilityg:I
jI[__Desion | i apriori
B e —
v
Experiments

[Balsa-Canto et al., BMC Systems Biology, 2010]
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Classical Model Development Framework: Frequentism

of experimental

equipment/process

Also implemented in commercial process simulators like gPROMS
1 ( Build drag-and-drop flowsheet)

i Estimate parameters and
analyse uncertainty

Iterate until

5

i Build & execute full-size 1
equipment model

=

sufficient

parameter accuracy

[source: https://www.psenterprise.com/concepts/mbe]
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Classical Model Development Framework: Frequentism

Also implemented in commercial process simulators like gPROMS

(‘Build drag-and-drop flowsheet) 3
1 of experimental

equipment/process

i Estimate parameters and R i Build & execute full-size 1
analyse uncertainty 5 equipment model

B o]

Iterate until

sufficient

7~ parameter accuracy

[source: https://www.psenterprise.com/concepts/mbe]

L I frequentism appropriate for model development and validation?

O = = =
B. Chachuat (Imperial College)
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Review of Frequentist Inference

@ Step 1: Formulate and solve a regression problem

0 € argmax L(O]u™,y™)
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Review of Frequentist Inference

@ Step 1: Formulate and solve a regression problem; e.g., ¢ regression

Nm ny .M 2 ny ) oy 2
6 € argmin Z (Z (Uk,la2 uk7,) +Z (YI(fk,Uk,f) yk?l) >

k=1 i=1 Ul i=1 O-yk7i
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Review of Frequentist Inference

@ Step 1: Formulate and solve a regression problem; e.g., ¢ regression

Nm ny .M 2 ny ) oy 2
6 € argmin Z (Z (Uk,la2 Uk’l) +Z (YI(fk,Uk,f) yk?l) >

k=1 i=1 Ul i=1 O-yk7i

@ Step 2: Construct (frequentist) confidence regions
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Review of Frequentist Inference

@ Step 1: Formulate and solve a regression problem; e.g., ¢ regression
n m 2
4 (yi(tkaukag)_yk,i) >

n n 2
A _ - = (uk,,- — u,rfj,-)
0 € arg min g g 5 + g 5
o° . oc .
Uyl i=1 Yiks!

k=1 i=1

@ Step 2: Construct (frequentist) confidence regions
Ow:={00|(6-8)"V; (6-8) <x},(1- )]

y

-----
’’’’’
®
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Review of Frequentist Inference

@ Step 1: Formulate and solve a regression problem; e.g., ¢ regression

Nm ny m \?2 ny m 2
~ Uk — U ; (te,ux, @) — :
0 € arg min E § ( : 5 k“) +§ : (y,( ik ) yk,/)

k=1 i=1 Tuk,i i=1 O i

@ Step 2: Construct (frequentist) confidence regions

Ow = {0 € O (9 — é)TVé_l (0 — é) < Xig(l — a)}

<+ Approach may be applied to very large-scale models
But...
— Solution of the regression problem needs global optimization

— Construction of inference regions assumes mismatch due to (Gaussian)
measurement noise only — no structural mismatch

— Wald regions assume unimodality — nonlinear inference regions (likelihood-ratio
test) are much harder to describe

— Confidence regions often confused with parameter regions including (1 — )% of
the probability distribution

v
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Review of Bayesian Inference

Construct a posterior distribution of the parameters, based on:
(i) a likelihood function; (ii) a prior distribution; and (iii) available observations

m(Ou™,y") o< L(O]u™,y™) ()
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Review of Bayesian Inference

Construct a posterior distribution of the parameters, based on:
(i) a likelihood function; (ii) a prior distribution; and (iii) available observations

m(Ou™,y") o< L(O]u™,y™) ()

@ Step 1: Generate samples from the (conditional) joint posterior distribution

7(0)L(6) contours

A

Initial 6
Markov chain

01
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Review of Bayesian Inference

Construct a posterior distribution of the parameters, based on:
(i) a likelihood function; (ii) a prior distribution; and (iii) available observations

m(Ou™,y") o< L(O]u™,y™) ()

@ Step 1: Generate samples from the (conditional) joint posterior distribution
@ Step 2: (Re)construct highest posterior density (HPD) credibility regions

Op :={0|7(O|u™,y") > mo} such that / 7(Ou™,y")dO =1 — «
©B

02 7(0)L(6) contours

A

Initial 6
Markov chain

01
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Review of Bayesian Inference

Construct a posterior distribution of the parameters, based on:
(i) a likelihood function; (ii) a prior distribution; and (iii) available observations

m(Ou™,y") o< L(O]u™,y™) ()

@ Step 1: Generate samples from the (conditional) joint posterior distribution
@ Step 2: (Re)construct highest posterior density (HPD) credibility regions

Op :={0|7(O|u™,y") > mo} such that / 7(Ou™,y")dO =1 — «
©B

<+ Impressive developments by the Machine Learning community: MCMC algorithms
(Metropolis-Hasting, nested sampling, affine-invariant stretch move, etc.)

But...
— Difficulty dealing with problems having > 10 parameters in general
— Difficulty dealing with multimodal posteriors

— MCMC algorithms need (sometimes many) tuning parameters (rejection test,
burning length, etc.) — Need for the chains to converge to their equilibrium
distributions
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Review of Set-Membership Inference

@ Determine a parameter region such that the model predictions are consistent with
the measurements within a given error set &:

@G::{Heeo

Jui,...,u,
[ ... ue—ul, y(t,ug,0) —y ... €&

E

"""""""""""" - N
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Review of Set-Membership Inference

@ Determine a parameter region such that the model predictions are consistent with
the measurements within a given error set &:

L Jui,...,u,
6@.—{0690 [ ... ue—uy, y(t,ue,0)—yy ... ]€€& }
6, y
""""""""""""""""""""" 78
O
® !
01 "
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Review of Set-Membership Inference

@ Determine a parameter region such that the model predictions are consistent with
the measurements within a given error set &:

@G::{Heeo

Jui,...,u,
[ ... ue—ul, y(t,ug,0) —y ... €&

Natural approach when lacking information about the measurement error

+ o+

Approach may also provide certificates for invalidating candidate models
But...
— Difficulty dealing with problems having > 10 parameters in general

— Current algorithms rely on complete search methods (branch-and-prune)

— Parameter region very sensitive to measurement noise — risk of false conclusions
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Challenges in Model-Based Inference

Various approaches developed / promoted by different communities:

Frequentist Bayesian Set-membership
stochastic search v v ?
complete search v ? v

L, Can Bayesian and set-membership estimation efficiently handle larger-scale
problems? Multimodal estimation problems?
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Challenges in Model-Based Inference

Various approaches developed / promoted by different communities:

Frequentist Bayesian Set-membership
stochastic search v v ?
complete search v ? v

L, Can Bayesian and set-membership estimation efficiently handle larger-scale
problems? Multimodal estimation problems?

New approaches combining existing inference frameworks

@ E.g., set-membership regression approach:

@RZZ{H*E@O Jdee & }

0™ € argmax L(0]y™, e)
[Peri¢ et al., J Proc Cont, 2018]
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Challenges in Model-Based Inference

Various approaches developed / promoted by different communities:

Frequentist Bayesian Set-membership
stochastic search v v ?
complete search v ? v

L, Can Bayesian and set-membership estimation efficiently handle larger-scale
problems? Multimodal estimation problems?

New approaches combining existing inference frameworks

@ E.g., set-membership regression approach:

@RZZ{H*E@O Jdee & }

0™ € argmax L(0]y™, e)
[Peri¢ et al., J Proc Cont, 2018]

New approaches taking advantage of multiple information sources — “Big Data":

@ Fuse quantitative data with qualitative data and expert opinions

@ Handle a very large volume of data
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Challenges in Model-Based Inference

Design an experiment to:

L Improve parameter confidence
L, Discriminate model structures

L Improve information content

R

Values of time-invariant
controls & equipment design
parameters ?

Profiles of time
varying controls ?

e

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes

_YuYr

Measurement
times ?
Initial conditions ?

Constraints on
m control variables
u laboratory equipment conditions
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Challenges in Model-Based Inference

Values of time-invariant

Design an experiment to: controls & equipment design

parameters ?
Measurement

% T times ?

L, Improve parameter confidence o LT T e

B Discriminate model structures

Profiles of time
varying controls ?

L Improve information content F

Challenges:

Initial conditions ?

Constraints on
m control variables
u laboratory equipment conditions

@ Optimal experiment design problems are notoriously hard to solve —
complex, typically nonconvex, objectives

@ “Chicken-and-egg” problem: model-based inference using an inaccurate
model!
L, Need for robust optimal design of experiments

@ Bayesian and set-membership approaches to experiment design
L, Will these approaches ever be able to handle large-scale problems?
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Example: BOD Abatement

B(t) = puS(t)B(t) — BB(t)
S(t) = — %5(15)3(15) + fBB(t)

b(t)= — TS uS(1)B(1)

@ S5(0) =4 mg/L, D(0) =10 mg/L
@ Constant Y =0.67 and f = 0.9
@ Estimated p, 3, and B(0)

Experimental data —e—
P Model fit Model Parameters

* Probability of parameter lying between (Final Value <% Confidence Interval) and (Final Value +% Confidence Interval) = &%

Dissolved Oxygen, [mg/L]

* The t-value shows the percentage accuracy of the estimated parameters, with respect to the 95% confidence intervals.
Model Final Initial Lower Upper Confidence Interval 95% Standard
Parameter Value Guess Bound Bound 90% 959%, 990/ t-value |Deviation
bOd—teSt' 0.407326]0.300000 0.00000]1.00000]0.0245700|0.0295000(0.03 0 13 0.0145700
b
Doditest 1.56126| 2.00000 0.00000|4.00000| 0.553100| 0.664000| 0.889500 2.351| 0.328000
m
bod_test. . S P R ,
— 0.0405593|0.100000]0.000100000(1.00000]0.0652400|0.0783200| 0.104900 )
X0 [mg/L]{0.0405593|0.100000 0.000100000 1.00000(0.0652400|0.0783200 0.104900 0
Reference t-value (95%): 6860

Click here to use above final values in future calculations

** an individual 95% t-value smaller than the reference t-value
indicates that the available data from these experiments may
not be sufficient to estimate the parameter precisely

Time, [day]

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 22 /38



Example: BOD Abatement

Dissolved Oxygen, [mg/L]

B(t) = puS(t)B(t) — BB(t)
S(t) = — %S(t)B(t) + fBB(t)

1 —

p(t)= — 1Y us(1)B(1)

Y

@ S5(0) =4 mg/L, D(0) =10 mg/L

Design one extra experiment for a more
precise parameter estimation. Consider the
same (unknown) biomass inoculum B(0) in
the flask and the same sensor; and optimize
the concentration of the sample

5(0) € [2,6] mg/L, the duration of the

@ Constant Y =0.67 and f = 0.9 experiment in [1, 4] days, and the

@ Estimated p, 3, and B(0)

E‘xperimen‘tal data —e—
Model fit

0 2 4 6 8
Time, [day]

B. Chachuat (Imperial College)

10

measurement times with Atx > 30 min

Wy
Model Parameters
* Probability of parameter lying between (Final Value <% Confidence Interval) and (Final Value +% Confidence Interval) = &%
* The t-value shows the percentage accuracy of the estimated parameters, with respect to the 95% confidence intervals.
Model Final Initial Lower Upper Confidence Interval 95% Standard
Parameter Value Guess Bound Bound 90% 959, 999, t-value [Deviation
bodStest: 0.407326|0.300000 0.00000]1.00000|0.0245700|0.0295000|0.0395200 13.81(0.0145700
b
bod_test. 1.56126| 2.00000 0.00000(4.00000| 0.553100( 0.66400 2.351| 0.328000
m
:’(gd—te“' [mg/L]{0.0405593|0.100000|0.000100000|1.00000{0.0652400(0.0783200( 0.104900/0.5179 **|0.0386900

Reference t-value (95%): |[1.68604

Click here to use above final values in future calculations

** an individual 95% t-value smaller than the reference t-value
indicates that the available data from these experiments may
not be sufficient to estimate the parameter precisely
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Example: BOD Abatement

Initialization: 2-day horizon, with 20 equidistant measurement times

Model Parameters

* Probability of parameter lying between (Nominal Value -¢% Confidence Interval) and (Nominal Value +% Confidence Interval) = &%
* The t-value shows the percentage accuracy of the estimated parameters, with respect to the 95% confidence intervals.

95%

Standard

t-value Deviation

15.66 0.0129900
8.407 0.0927900

1.729 0.0117200

Model Nominal Scaling Confidence Interval
p t Value s
CllulEass (fixed) GELON 90% 95% 999%
:Od—teSt' 0.407 6 0.407326
oS 156126 156126 0.155100 0.18 0.247100
m
:’(':)d—t“t' [mg/L] 0.0405593 0.0405593 0.0195900 0.0234600 0.0312200
Reference t-value (95%): 1.6714
Experiment: extra (designed)
Duration
i . Lower Bound Upper Bound
Final Initial y y
Value Guess dagrange dagrange
Value Multiplier Value Multiplier
1.53616 2.00000 00000 0 00000 0
Initial Conditions
i . Lower Bound Upper Bound
N Final Initial g g
Value Guess agrange agrange
Value Multiplier Value Multiplier
-1x10°% 10.0000 * 1, 1p%°
0 6.00000 * 0.006467

Control Intervals

Lower Bound Upper Bound

N Final Initial o g
Value Guess agrange agrange
value Multiplier s Multiplier
Interval # 1 1.53616 0.00000 00000 0 00000 0

* active bound

B. Chachuat (Imperial College) Uncertainty in

—
[l extra (extra_20180223 095251) : ; ; ; ; o' g X
View: |Measurements Plot = Measured Variable: |extra: bod_test.D :

105
"=
— .l
3 95 .
E .
S
o
@
;\
<1
a
&
g 85 .
[
"s
-....
[
[T ]
7.5
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 1.4 1.5
Time
Standard deviation M Predicted values
;Reéort Measurements | Properties ‘
L—
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Example: BOD Abatement

Initialization: 1-day horizon, with 20 equidistant measurement times

Model Parameters

* Probability of parameter lying between (Nominal Value % Confidence Interval) and (

Nominal Value +a% Confidence Interval) = &%

* The t-value shows the percentage accuracy of the estimated parameters, with respect to the 95% confidence intervals.

Model N\‘I):II:::I Scaling Confidence Interval 95% Standard
Parameter (fixed) Factor 90% 95% 990 t-value Deviation
:°d—t65t' 0.407326 0.407326 0.0182600 0.0218
bod_test. 156126 156126 0.174500 0.209000 O. 7.469 0.104400
m
—=3t  [mg/L] 0.0405593 0.0405593 0.0207900 0.0248900 0.0331200 1.63 * 0.0124400
:)(gd test. /7T
Reference t-value (95%): 1.6714
Experlment. extra (deSIgned) [FU extra (extra_20180223 115040) i i i v o X
Final Initial Lower Bound Upper Bound 10
ina niaa
value Guess Lagrange Lagrange \.‘
Value Multiplier Value Multiplier
4.00000 1.00000 1.00000 0 4.,00000 0 9
Initial Conditions g
i . Lower Bound Upper Bound g \h
Name Final Initial g g g g
value Guess agrange agrange hat
Value Multiplier Value Multiplier 2
o
bod_test.D [mg/L] 10.0000 10.0000 10.0000 * _1,103° 10.0000 * 1, 103° g -
7
bod_test.S [mg/L] 6.00000 4.00000 2.00000 0 6.00000 0 [
Control Intervals
. . Lower Bound Upper Bound 5
N Final Initial 1 2 3 4
Value Guess value I:_Ia?tl'-a:!ge value :’_Ia:_]tll'a:lge Time
L LU UL standard deviation M Predicted values
Interval # 1 .00000 0.00000 .00000 0 00000 0
" : L Reéort ._Measurements L Properties |
* active boun

B. Chachuat (Imperial College)
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(Forward) Uncertainty Propagation

)
Uncertainty

u

Controls

U

4

Ui

Y| System, S(u,y,0) =0

Y2

01

-

Outputs

Y1

Global sensitivity analysis (GSA)

B. Chachuat (Imperial College)
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Review of Uncertain Dynamic Systems

Classical Monte Carlo Approach:

@ Inner-approximation of reachable set

@ Approximation of state joint probability distribution
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Review of Uncertain Dynamic Systems

Classical Monte Carlo Approach:

@ Inner-approximation of reachable set

@ Approximation of state joint probability distribution

<+ Non-intrusive approach, readily implemented and parallelizable

1
— Slow convergence, accuracy o< N~2
(quasi-random low-discrepancy sequences o< N~ !; importance sampling; etc)
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Review of Uncertain Dynamic Systems

Spectral Approach: Set-Based Approach:

Approximate functional dependence of Enclose all possible outputs y(t,-) w.r.t.
outputs y(t,-) w.r.t. random parameters § parameter bounds 6 € ©
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Review of Uncertain Dynamic Systems

Spectral Approach: Set-Based Approach:

Approximate functional dependence of Enclose all possible outputs y(t,-) w.r.t.
outputs y(t,-) w.r.t. random parameters § parameter bounds 6 € ©

Polynomial chaos (PC) expansion: Set-valued integration:

y(t,0) ~ > £,(t)¢;(6) y(t,0) € {ng(t)¢j(a)} D r(t)

L, Both approaches entail the construction of (polynomial) surrogates
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Review of Uncertain Dynamic Systems

Spectral Approach: Set-Based Approach:

Approximate functional dependence of Enclose all possible outputs y(t,-) w.r.t.
outputs y(t,-) w.r.t. random parameters § parameter bounds 6 € ©

Polynomial chaos (PC) expansion: Set-valued integration:

y(t,0) ~ > £,(t)¢;(6) y(t,0) € {ng(t)¢j(a)} D r(t)

L, Both approaches entail the construction of (polynomial) surrogates

Propagate reachable-set
parameterization & through
continuous-time or discretized ODEs
(intrusive)

Determine coefficients & using Galerkin
scheme (intrusive); stochastic colloc.,
projection, or regression (non-intrusive)

L, Both approaches handle small parameter dimensions only
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Review of Uncertain Dynamic Systems

Spectral Approach: Set-Based Approach:

Enclose all possible outputs y(t,-) w.r.t.

Approximate functional dependence of
parameter bounds 8 € ©

outputs y(t,-) w.r.t. random parameters 6

Polynomial chaos (PC) expansion: Set-valued integration:

y(t,0) ~ > £,(t)¢;(6) y(t,0) € {ng(t)¢j(a)} D r(t)

L, Both approaches entail the construction of (polynomial) surrogates

Propagate reachable-set
parameterization & through
continuous-time or discretized ODEs
(intrusive)

Determine coefficients & using Galerkin
scheme (intrusive); stochastic colloc.,
projection, or regression (non-intrusive)

L, Both approaches handle small parameter dimensions only
Accuracy can degrade along time Bounds can explode in finite time
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Example: cAMP Oscillations

Oscillations in cAMP observed during the early development of D. discoideum

3.5
, ~ 5 ~ 2.5
AGGREGATION STAGE NETWORK ) . ACA | £\ f Iz
3 f ’} f xCAR1
S'AMPPDE %L g N\ ™\
CcAMP pulse ~ 25 = 7 | ‘PKA
i extracellular S = | Y %y
o~ e —» secreted = 2 / \ f \ /
cAMP intracellular © Avteinal \ i g
L 2 .. cAMP @1
I LnAtarPnal @ 1.5 \ REGA % / {
. . Q . " @ ' ERK2
PKA |—> Gene Expression o 1 Q v
Y c 1
o Q
0.5 External =
.3 r|
cAMP
0.5 ; . )
[Laub & Loomis, Mol Biol Cell, 1998] v 8 o s 0 %R g & W B AN B W
Time (min) Time (min)

| 24h
) fruiting

\
| 20-22h body

. . - early
) / culminants , >

18h <
mexican_ J
‘hat ~ 16~ 3

\ %
- 2 ( \ir Y "
S finger__ ¢ 13h . il 10h
- Qe E _ tipped  tight loose agg.
rﬂi’grating‘slu‘g agg. agg.

= = £ DA
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Example: cAMP Oscillations

Oscillations in cAMP observed during the early development of D. discoideum

2.
A
AGGREGATION STAGE NETWORK J jc AR
S'AMPPDE % ’E'\
=0 eal
e e N e llular 8 j 3 KP
9 c
_> _.- A A(:; * intracellular ‘é ‘ - g
L interna | c 1 cAMP REG A g 14
REG A]— | camp 9 ? \ / = -
PKA | —> Gene Expression 5 1\ o | A
c 1
(®) ‘ 8 ‘
0.5 External
| AN
[Laub & Loomis, Mol Biol Cell, 1998] 20 2 90 0 5 10 15 20 25
Tlme (m|n) Time (min)

@ 14 kinetic rate constants, k;

kixy(t) — koxa (t)x2(t) @ 7 states,
k3X5(t) — k4X2(t) _ [ACA],
ksxz(t) — kexa(t)x3(t) x2 = [PKA],
x(t) = | ki — kexa(t)xa(t) x3 = [ERK2],
ngl(t) — k10X4(t)X5(t) xs = [REGA],
k11X1(t) — k12X6(t) X5 = [Internal CAMP],
I kisxg(t) — kiaxz(t) x¢ = [External cAMP],

- X7 = [CARl]

30
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Example: cAMP Oscillations

@ Single uncertain parameter kg € 0.8 £ 0.1

@ Set-propagation using a Chebyshev polynomial approximant and an
ellipsoidal remainder bound
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Example: cAMP Oscillations

@ Single uncertain parameter kg € 0.8 £ 0.1

@ Set-propagation using a Chebyshev polynomial approximant and an
ellipsoidal remainder bound

X, [aM]

q=16 ——
q=8 ——
g4 —— |
g=2 ——

50 60 70

L, Bound explosion is delayed upon

increasing expansion order, up to
a certain point
B. Chachuat (Imperial College)
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Example: cAMP Oscillations

@ Single uncertain parameter kg € 0.8 £ 0.1

@ Set-propagation using a Chebyshev polynomial approximant and an
ellipsoidal remainder bound

3.5
3 L
= s 2.5
X< < ol
1 15 F t=0
g=16 = t=25 =——
=8 —— 1l t=50 ——
=4 —— | =75 ——
g=2 —— ‘ ‘ ‘ ‘ =100 ——
50 éo }0 0'50.5 0.6 0.7 08 0.9 1 1.1
kg [uM™"min"]
L, Bound explosion is delayed upon L, State dependence in parameter
increasing expansion order, up to increasingly nonlinear as time
a certain point Increases
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Example: cAMP Oscillations

@ Single uncertain parameter kg ~ N(0.8,0.1)

@ 8th-order polynomial chaos expansion with Hermite polynomial basis,
compared with Monte Carlo approach with 10,000 samples
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Example: cAMP Oscillations

@ Single uncertain parameter kg ~ N(0.8,0.1)

@ 8th-order polynomial chaos expansion with Hermite polynomial basis,
compared with Monte Carlo approach with 10,000 samples

33l - PCE i —PCE
s —— Monte Carlo —— Monte Carlo
04
29
gﬂ o.g) 03
jg 25 B
& 202
2.1
0.1
L/
1 1 0 1 1
0 25 50 75 0 25 50 75
time time

[Streif et al., J Proc Cont, 2016]

L PCE is in agreement with Monte Carlo on short horizons

L Large discrepancy in variance predictions for t > 50
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Challenges in Uncertain Dynamic Systems

Sampling Spectral Set-based
non-intrusive v v ?
intrusive v v

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 31 /38



Challenges in Uncertain Dynamic Systems

Sampling Spectral Set-based
non-intrusive v v ?
intrusive v v

Improve Existing Methods

@ Solve faster / more accurately by exploiting structure (e.g., sparsity,
simplifications) and properties (e.g., periodicity)

@ Provide theoretical justifications (e.g., stability, accuracy guarantees

@ Handle time-varying uncertainty (e.g., tubes, Karhunen-Loéve expansion)
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Challenges in Uncertain Dynamic Systems

Sampling Spectral Set-based
non-intrusive v v ?
intrusive v v

Improve Existing Methods
@ Solve faster / more accurately by exploiting structure (e.g., sparsity,
simplifications) and properties (e.g., periodicity)

@ Provide theoretical justifications (e.g., stability, accuracy guarantees

@ Handle time-varying uncertainty (e.g., tubes, Karhunen-Loéve expansion)

Develop New Methods

@ Exploit underlying theories (e.g., Kolmogorov equations, Hamilton-Jacobi-

Isaacs equations)

@ Combine non-intrusive approaches synergistically (e.g., PC-Kriging)

@ Combine non-intrusive approaches (black-box components) with intrusive

approaches (glass-box components)

@ Exploit model reduction and multi-fidelity modeling techniques

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018



Challenges in Uncertain Dynamic Systems

Big data holds promises to better characterize uncertainty in process and
biological systems

@ Historical data; Process analytical chemistry (PAC) tools; DNA micro-arrays; etc
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Challenges in Uncertain Dynamic Systems

Big data holds promises to better characterize uncertainty in process and
biological systems

@ Historical data; Process analytical chemistry (PAC) tools; DNA micro-arrays; etc

Data Classification / Labeling

6 Normal
’ Operating
o 4l Abnormal Conditions
L Oper_a’_nng S
Conditions - A
2t / \
i \
«~ 0 }
oL \ ‘-\
2 I ‘e .\\\ //
. -4t ;
o 80 L
60 =l

[Ning & You, Comp Chem Eng, 2018] [Garcia-Mufioz & MacGregor, Chem Eng Prac, 2016]
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Challenges in Uncertain Dynamic Systems

Big data holds promises to better characterize uncertainty in process and

biological systems

B. Chachuat (Imperial College)

[Ning & You, Comp Chem Eng, 2018]

Data Classification / Labeling

4 : Abnormal
Operating
Conditions

@ Historical data; Process analytical chemistry (PAC) tools; DNA micro-arrays; etc

Normal

Operating
Conditions
'3 & 4 ‘\\~
\-
\
i .//

Uncertainty in Dynamic Processes

[Garcia-Mufioz & MacGregor, Chem Eng Prac, 2016]

L, Take advantage of refined uncertainty descriptions to reduce conservatism
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Reverse Uncertainty Propagation

How Might We ...

@ Assess robustness in
biochemical networks?

@ Characterize a design space
in QbD?

@ Design safe operating
regions in chemical plants?

@ Build inference regions for
model parameters?
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Reverse Uncertainty Propagation

How Might We ...

@ Assess robustness in
biochemical networks?

@ Characterize a design space degrees o freedom

in QbD?

System
S0,d,y) =0

@ Design safe operating 0
regions in chemical plants? 6, ﬁ

uncertainty

@ Build inference regions for
model parameters?

Robust Design
Find d € D such that the
output constraintsy €
are met for all uncertainty

0c0o

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes
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Reverse Uncertainty Propagation

up

controls

How Might We ... Feedback, u = 7(y. )

U

@ Assess robustness in
biochemical networks?

dy 2T '
@ Characterize a design space degrees of freedom outputs
in QbD? System
S,d,u,y) =0
@ Design safe operating B
regions in chemical plants? 6,
uncertainty
@ Build inference regions for
model parameters?
01
Robust Design Flexible Design

Find d € D such that the Find d € D such that the

output constraintsy € output constraintsy € Y

are met for all uncertainty  are met for all uncertainty

0co 0 € © and a (perfect)
control u € U
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Reverse Uncertainty Propagation

How

up

controls

Might We ... Feedback, u = 7(y. )

U

Assess robustness in
biochemical networks?

Characterize a design space degrees of freedom outputs

in QbD? @ <:|{ 3(0,dejf;1>=0 }<:|

Design safe operating 0 y
regions in chemical plants? 6,

uncertainty
Build inference regions for
model parameters?

Robust Design Flexible Design Integrated Design & Control

0

Find d € D such that the Find d € D such that the Find d € D such that the
output constraintsy € output constraintsy € Y output constraints y € ) are
are met for all uncertainty  are met for all uncertainty = met for all uncertainty 8 € ©

0c0o

0 € © and a (perfect) and a feedback control
control u € Y u=F(y,A)
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Robust Feasibility Analysis

dp
FeaSIblllty Set A degrees of freedom

VO € ©, dy:
D:=<d| 0=5(6,d,y)

0>g(6.y)

@ Probabilistic counterpart, with

chance constraints instead of
worst-case > d]
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Robust Feasibility Analysis

Feasibility Set A

VO € ©, dy:
D=<d

0=35(0,d,y)
0>g(0,y)
@ Probabilistic counterpart, with
chance constraints instead of
worst-case

degrees of freedom

Feasibility Test
x(d) := max [|g(6, y)]l-
s.t. 0=35(6,d,y)
@ x(d) < 0: robust feasibility
@ x(d) > 0: infeasible scenarios

b Global optimization required in the
presence of nonconvex constraints
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Robust Feasibility Analysis

Feasibility Set

VO € ©, dy:
D=<d

0=35(0,d,y)
0>g(0,y)
@ Probabilistic counterpart, with
chance constraints instead of
worst-case

Feasibility Test
x(d) := max [|g(6, y)]l-
s.t. 0=35(6,d,y)
@ x(d) < 0: robust feasibility
@ x(d) > 0: infeasible scenarios

b Global optimization required in the
presence of nonconvex constraints

degrees of freedom

> di
Feasibility Index — Design Centering
max V(A)
s.t. Vd € B(A),
>
0= max |g(8,y)]~

s.t. 0 =5(6,d,y)

|9 Global optimality certificate required
for inner problem, desirable for outer
problem
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Robust Flexibility Analysis

p;_{d

@ Probabilistic counterpart, with
chance constraints instead of
worst-case

Flexibility Set

degrees of freedom

0=5(0,d,u,y)
0>g(0,u,y)

VO €O, Jucid, Jy: }

> d;
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Robust Flexibility Analysis

p;_{d

@ Probabilistic counterpart, with
chance constraints instead of
worst-case

Flexibility Set A

degrees of freedom

0=5(0,d,u,y)
0>g(0,u,y)

VO €O, Jucid, Jy: }

> d;

Feasibility Test

d) ;= i 0 o
x(d) max umelgllg( ,u,y)|

st. 0=5(0,d,u,y)

@ x(d) < 0: robust feasibility
@ x(d) > 0: infeasible scenarios
b Global optimization required in the

presence of nonconvex constraints

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 35 /38



Flexibility Set

degrees of freedom

Robust Flexibility Analysis
0=5(0,d,u,y)

D = {d
> g(0,u,y)

@ Probabilistic counterpart, with
chance constraints instead of

VO €O, Jucid, Jy: }

worst-case > d
Feasibility Test Flexibility Index — Design Centering
d) = 0, . ax V(A
x(d) := max min|lg(6,u,y)| max V(A)
st. 0=35(6,d,u,y) s.t. vd € B(A),
0 > max min||g(0,u,y)|/c
@ x(d) < 0: robust feasibility 0€0,y ucld
@ x(d) > 0: infeasible scenarios st. 0=5(0,d,u,y)
b Global optimization required in the |9 Global optimality certificate required
presence of nonconvex constraints for inner problem, desirable for outer

problem
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Challenges in Robustness and Flexibility Analyses

How to solve bi-level or multi-level nonconvex optimization formulations with
embedded dynamic systems?

@ Rigorous algorithms exist for steady-state counterparts, but they are cursed
@ Tailored relaxation strategies <+—- Sampling-based approximation strategies

L Opportunity for surrogate-based optimization techniques
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Challenges in Robustness and Flexibility Analyses

How to solve bi-level or multi-level nonconvex optimization formulations with
embedded dynamic systems?

@ Rigorous algorithms exist for steady-state counterparts, but they are cursed
@ Tailored relaxation strategies <+—- Sampling-based approximation strategies

L Opportunity for surrogate-based optimization techniques
How to handle time-varying uncertainty?

How to devise effective computational platforms?
@ Both modeling and numerical solution

Computers and Chemical Engineering 114 (2018) 81-88

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

A framework for modeling and optimizing dynamic systems under @cmssmm(
uncertainty

Bethany Nicholson*, John Siirola

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, United States
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Challenges in Robustness and Flexibility Analyses

Scenario-Integration Optimization
[Abel & Marquardt, AIChE J, 2000]

. . . ,,1/’:':‘,:' >1 Nominal
@ Account for possible failure scenarios Vo2 gl Soenario
alongside a nominal scenario . 'R
@ Scenarios may have different dynamics,
. . . Fail
constraints, objectives, degrees of freedom Scenarios
@ Scenarios may be triggered at any time ‘ J

. . . . . “Recourse Decisions”
L, Multi-level dynamic optimization problems
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Challenges in Robustness and Flexibility Analyses

Scenario-Integration Optimization
[Abel & Marquardt, AIChE J, 2000]

Nominal

@ Account for possible failure scenarios /.\) } Scenario
alongside a nominal scenario Pl Oh

@ Scenarios may have different dynamics,
constraints, objectives, degrees of freedom

Failure
Scenarios

@ Scenarios may be triggered at any time

|9 “Recourse Decisions”

Multi-level dynamic optimization problems

o Cover 300m in minimum time

o Do not hit the wall at 350m in
case of break failure to 10% of
nominal breaking capability
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Challenges in Robustness and Flexibility Analyses

Scenario-Integration Optimization
[Abel & Marquardt, AIChE J, 2000]

. . . ,1/’:\/:/' Nominal
@ Account for possible failure scenarios A } Soenario
alongside a nominal scenario Sl

@ Scenarios may have different dynamics,
constraints, objectives, degrees of freedom

Failure
Scenarios

@ Scenarios may be triggered at any time

“Recourse Decisions”
L, Multi-level dynamic optimization problems
o Cover 300m in minimum time Robust-to-Dynamic Optimization
o Do not hit the wall at 350m in [Ahmadi & Giinliik, ArXiv, 2018]
case of break failure to 10% of
nominal breaking capability @ Policy should remain feasible at all times

despite dynamic drift:

m‘”{f(x‘)) std. x(t) = g(x(t))

0 300 350 Xo

x(t,xo) € Q,Vt >0 }
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“To be uncertain is to be uncomfortable, but to be certain
is to be ridiculous.” — Chinese proverb

*’\ cer ‘ta.\“t\]

Thank you very much for your attention!
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