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Quality by Design (QbD)

The FDA encourages the pharmaceutical industry to design (and validate)
their processes for a range of process conditions that results in acceptable
products for the patient: Design Space
[ICH Guideline Q8 on Pharmaceutical Development, 2004]�

Need to understand and quantify complex interactions between material,
processes and products
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Quality by Design (QbD)

The FDA encourages the pharmaceutical industry to design (and validate)
their processes for a range of process conditions that results in acceptable
products for the patient: Design Space
[ICH Guideline Q8 on Pharmaceutical Development, 2004]�

Need to understand and quantify complex interactions between material,
processes and products

Robust Approach:

Identify all possible combinations of
process parameters that yield acceptable
product quality for all possible variations
in raw materials

Carry out a well-designed set of
experiments (DOE)

Use response surface methodology

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 2 / 38



Use of Mechanistic Models in QbD

Advantages of a Model-Centric Strategy:

Ability to study of a very large number of parameters simultaneously
Ability to adjust operating conditions to compensate for materials variability
leading to larger design space (robust æ reactive)�

Empowered by mathematical tools developed by the PSE community

But...

Need to account for and carefully quantify modeling inaccuracies, alongside
other types of uncertainty
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Example: Suzuki Coupling Model

Gas-liquid reaction system in batch mode:

Quality Attributes:
Max. amount of unreacted
SM2 (reaction completion)
Max. amount of produced
Imp1 (downstream purif.)

Process Parameters:
ratio of starting materials
reaction volume
solvent composition
reaction temperature
catalyst loading
initial Pd speciation
O2 level in head-space
reaction time
potassium phosphate
charged amount
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Example: Suzuki Coupling Model

Kinetic Model Formulation:
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Example: Suzuki Coupling Model

Kinetic Model Calibration:

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 6 / 38



Example: Suzuki Coupling Model

Design space estimated via griding of process parameters and running
numerous simulations:

How might we use PSE methods and tools to:

Precisely characterize the boundary region of the design
space inside the knowledge space

Identify the largest multi-dimensional box fitting within the
design space

Be resilient to the (parametric or structural) modeling
uncertainty

Guide targeted experiments to confirm / refine the design
space boundary

...
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Computational Systems Biology

Identify and understand the basic architecture for a robust system,
and the associated trade-o�s and faults: Reverse Engineering
Develop counter-measures, such as targets for new drugs:
Therapeutic Design
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Approaches in Computational Systems Biology

How large a perturbation can a system tolerate before loosing a

specific behavior?

Examples of Qualitative Functional Behaviors:
Oscillation, Bistability, Switch-like activation, Perfect adaptation,
Amplification, etc.
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Example: Covalent Modification Cycle

MAP cascades: a ubiquitous “signaling module” in Eucaryotes

DAE Model:
Can a simple covalent modification cycle

feature both a high gain and switch-like
activation in a wide operating window?
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Trends in Computational Systems Biology

First Wave – Development and understanding of basic elements and
modules
Second Wave – Integration of basic elements and modules to create
system-level circuitry
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A More Complex Signaling Pathway

How might we use PSE methods and tools to:

Characterize the stability, oscillations, and other dynamical
properties of such complex systems

Control these cellular systems through drugs or genetic
modifications

Develop models with suitable algebraic forms for the
reactions and values for the kinetic parameters

Estimate time-varying internal states, such as the
concentrations of proteins and other chemical substances,
from input/output experiments

...

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 12 / 38



A More Complex Signaling Pathway

How might we use PSE methods and tools to:

Characterize the stability, oscillations, and other dynamical
properties of such complex systems

Control these cellular systems through drugs or genetic
modifications

Develop models with suitable algebraic forms for the
reactions and values for the kinetic parameters

Estimate time-varying internal states, such as the
concentrations of proteins and other chemical substances,
from input/output experiments

...

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 12 / 38



Workflow

1 Prediction of Uncertainty:

Characterizing the uncertainty under which a system must be resilient
external perturbations; uncertain measurement data
structural / parametric modeling uncertainties

2 Exploitation of Uncertainty:

Applying methods and tools for design and analysis of resilient systems
uncertainty quantification; robust design; flexibility analysis; etc
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Uncertainty Descriptions: The Role of Data

Extreme Variability of Data across the Process and Biotechnology Industries
“Big” data
Quantitative data
Precise data

vs.Ωæ
Ωæ
Ωæ

Scarce data
Qualitative data and expert knowledge
Noisy data

Two Main Paradigms for Uncertainty Description in Model Development:
Probabilistic Set-membership

À
Frequentist inference

Determine a fixed value
for the parameters

√
Bayesian inference

Determine a probability
distribution for the

parameters

¿
Set-membership inference

Determine a range of
consistent parameter values
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Classical Model Development Framework: Frequentism

How to best use data to validate or invalidate a mathematical model?

[Balsa-Canto et al., BMC Systems Biology, 2010]
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Classical Model Development Framework: Frequentism

Also implemented in commercial process simulators like gPROMS

[source: https://www.psenterprise.com/concepts/mbe]

�

Is frequentism appropriate for model development and validation?
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Review of Frequentist Inference

Step 1: Formulate and solve a regression problem

; e.g., ¸2 regression

◊̂ œ arg max L(◊|um, y
m)

Step 2: Construct (frequentist) confidence regions

�W :=
Ó
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+ Approach may be applied to very large-scale models
But...

≠ Solution of the regression problem needs global optimization
≠ Construction of inference regions assumes mismatch due to (Gaussian)

measurement noise only – no structural mismatch
≠ Wald regions assume unimodality – nonlinear inference regions (likelihood-ratio

test) are much harder to describe
≠ Confidence regions often confused with parameter regions including (1 ≠ –)% of

the probability distribution
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Review of Bayesian Inference

Construct a posterior distribution of the parameters, based on:
(i) a likelihood function; (ii) a prior distribution; and (iii) available observations

fi(◊|um, y
m) Ã L(◊|um, y

m) fi(◊)

Step 1: Generate samples from the (conditional) joint posterior distribution
Step 2: (Re)construct highest posterior density (HPD) credibility regions

�B := {◊ | fi(◊|um, y
m) Ø fi–} such that

⁄

�B

fi(◊|um, y
m) d◊ = 1 ≠ –
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�B := {◊ | fi(◊|um, y
m) Ø fi–} such that

⁄

�B

fi(◊|um, y
m) d◊ = 1 ≠ –

+ Impressive developments by the Machine Learning community: MCMC algorithms
(Metropolis-Hasting, nested sampling, a�ne-invariant stretch move, etc.)
But...

≠ Di�culty dealing with problems having Ø 10 parameters in general
≠ Di�culty dealing with multimodal posteriors
≠ MCMC algorithms need (sometimes many) tuning parameters (rejection test,

burning length, etc.) – Need for the chains to converge to their equilibrium
distributions
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Review of Set-Membership Inference

Determine a parameter region such that the model predictions are consistent with
the measurements within a given error set E :

�G :=
;

◊ œ �0

----
÷u1, . . . , unm :
[ . . . uk ≠ u

m
k , y(tk , uk , ◊) ≠ y

m
k . . . ] œ E

<
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Review of Set-Membership Inference

Determine a parameter region such that the model predictions are consistent with
the measurements within a given error set E :

�G :=
;

◊ œ �0

----
÷u1, . . . , unm :
[ . . . uk ≠ u

m
k , y(tk , uk , ◊) ≠ y

m
k . . . ] œ E

<

+ Natural approach when lacking information about the measurement error
+ Approach may also provide certificates for invalidating candidate models

But...

≠ Di�culty dealing with problems having Ø 10 parameters in general
≠ Current algorithms rely on complete search methods (branch-and-prune)
≠ Parameter region very sensitive to measurement noise – risk of false conclusions
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Challenges in Model-Based Inference

Various approaches developed / promoted by di�erent communities:

Frequentist Bayesian Set-membership
stochastic search X X ?

complete search X ? X

�

Can Bayesian and set-membership estimation e�ciently handle larger-scale
problems? Multimodal estimation problems?

New approaches combining existing inference frameworks

E.g., set-membership regression approach:

�R :=
;

◊ú œ �0

----
÷e œ E :
◊ú œ arg max L(◊|ym, e)

<

[PeriÊ et al., J Proc Cont, 2018]

New approaches taking advantage of multiple information sources – “Big Data”:

Fuse quantitative data with qualitative data and expert opinions
Handle a very large volume of data
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Challenges in Model-Based Inference

Design an experiment to:�

Improve parameter confidence�

Discriminate model structures�

Improve information content�

...

Challenges:

Optimal experiment design problems are notoriously hard to solve –
complex, typically nonconvex, objectives

“Chicken-and-egg” problem: model-based inference using an inaccurate
model!�

Need for robust optimal design of experiments

Bayesian and set-membership approaches to experiment design�

Will these approaches ever be able to handle large-scale problems?
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Example: BOD Abatement

Ḃ(t) = µS(t)B(t) ≠ —B(t)

Ṡ(t) = ≠ µ
Y S(t)B(t) + f —B(t)

Ḋ(t) = ≠ 1 ≠ Y
Y µS(t)B(t)

S(0) = 4 mg/L, D(0) = 10 mg/L
Constant Y = 0.67 and f = 0.9
Estimated µ, —, and B(0)

Design one extra experiment for a more
precise parameter estimation. Consider the
same (unknown) biomass inoculum B(0) in
the flask and the same sensor; and optimize
the concentration of the sample
S(0) œ [2, 6] mg/L, the duration of the
experiment in [1, 4] days, and the
measurement times with �tk Ø 30 min
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Example: BOD Abatement

Initialization: 2-day horizon, with 20 equidistant measurement times
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Example: BOD Abatement

Initialization: 1-day horizon, with 20 equidistant measurement times
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(Forward) Uncertainty Propagation

⇥

U

Y

✓1

✓2

y1

y2

u1

u2

Controls

OutputsUncertainty

System, S(u, y, ✓) = 0

Global sensitivity analysis (GSA)
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Review of Uncertain Dynamic Systems

Classical Monte Carlo Approach:

ẏ(t) = f(t, y(t), ◊)

y(0) y(T )

Inner-approximation of reachable set
Approximation of state joint probability distribution

+ Non-intrusive approach, readily implemented and parallelizable
≠ Slow convergence, accuracy Ã N≠ 1

2

(quasi-random low-discrepancy sequences Ã N≠1; importance sampling; etc)
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2

(quasi-random low-discrepancy sequences Ã N≠1; importance sampling; etc)
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Review of Uncertain Dynamic Systems

Spectral Approach:

Approximate functional dependence of
outputs y(t, ·) w.r.t. random parameters ◊

Polynomial chaos (PC) expansion:

y(t, ◊) ¥
ÿ

k

›k(t)„j(◊)

Set-Based Approach:

Enclose all possible outputs y(t, ·) w.r.t.
parameter bounds ◊ œ �

Set-valued integration:

y(t, ◊) œ

I
ÿ

k

›k(t)„j(◊)

J
ü r(t)

�

Both approaches entail the construction of (polynomial) surrogates

Determine coe�cients › using Galerkin
scheme (intrusive); stochastic colloc.,
projection, or regression (non-intrusive)

Propagate reachable-set
parameterization › through
continuous-time or discretized ODEs
(intrusive)�

Both approaches handle small parameter dimensions only

Accuracy can degrade along time Bounds can explode in finite time
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Example: cAMP Oscillations

Oscillations in cAMP observed during the early development of D. discoideum

[Laub & Loomis, Mol Biol Cell, 1998]
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Example: cAMP Oscillations

Oscillations in cAMP observed during the early development of D. discoideum

[Laub & Loomis, Mol Biol Cell, 1998]

ẋ(t) =

S

WWWWWWWWU

k1x7(t) ≠ k2x1(t)x2(t)
k3x5(t) ≠ k4x2(t)
k5x7(t) ≠ k6x2(t)x3(t)
k7 ≠ k8x3(t)x4(t)
k9x1(t) ≠ k10x4(t)x5(t)
k11x1(t) ≠ k12x6(t)
k13x6(t) ≠ k14x7(t)

T

XXXXXXXXV

14 kinetic rate constants, ki

7 states,
x1 = [ACA],
x2 = [PKA],
x3 = [ERK2],
x4 = [REGA],
x5 = [Internal cAMP],
x6 = [External cAMP],
x7 = [CAR1]
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Example: cAMP Oscillations

Single uncertain parameter k6 œ 0.8 ± 0.1

Set-propagation using a Chebyshev polynomial approximant and an
ellipsoidal remainder bound

�

Bound explosion is delayed upon
increasing expansion order, up to
a certain point

�

State dependence in parameter
increasingly nonlinear as time
increases
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Example: cAMP Oscillations

Single uncertain parameter k6 ≥ N (0.8, 0.1)
8th-order polynomial chaos expansion with Hermite polynomial basis,
compared with Monte Carlo approach with 10,000 samples

[Streif et al., J Proc Cont, 2016]�

PCE is in agreement with Monte Carlo on short horizons�

Large discrepancy in variance predictions for t > 50
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Challenges in Uncertain Dynamic Systems

Sampling Spectral Set-based
non-intrusive X X ?

intrusive X X

Improve Existing Methods
Solve faster / more accurately by exploiting structure (e.g., sparsity,
simplifications) and properties (e.g., periodicity)
Provide theoretical justifications (e.g., stability, accuracy guarantees
Handle time-varying uncertainty (e.g., tubes, Karhunen-Loève expansion)

Develop New Methods
Exploit underlying theories (e.g., Kolmogorov equations, Hamilton-Jacobi-
Isaacs equations)
Combine non-intrusive approaches synergistically (e.g., PC-Kriging)
Combine non-intrusive approaches (black-box components) with intrusive
approaches (glass-box components)
Exploit model reduction and multi-fidelity modeling techniques
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Challenges in Uncertain Dynamic Systems

Big data holds promises to better characterize uncertainty in process and

biological systems

Historical data; Process analytical chemistry (PAC) tools; DNA micro-arrays; etc

Data Classification / Labeling

[Ning & You, Comp Chem Eng, 2018] [García-Muñoz & MacGregor, Chem Eng Prac, 2016]

�

Take advantage of refined uncertainty descriptions to reduce conservatism
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Reverse Uncertainty Propagation

How Might We ...

Assess robustness in
biochemical networks?

Characterize a design space
in QbD?

Design safe operating
regions in chemical plants?

Build inference regions for
model parameters?

Robust Design
Find d œ D such that the
output constraints y œ Y
are met for all uncertainty
◊ œ �

Flexible Design
Find d œ D such that the
output constraints y œ Y
are met for all uncertainty
◊ œ � and a (perfect)
control u œ U

Integrated Design & Control
Find d œ D such that the
output constraints y œ Y are
met for all uncertainty ◊ œ �
and a feedback control
u = F(y, ⁄)
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Robust Feasibility Analysis

Feasibility Set

D :=

I
d

-----

’◊ œ �, ÷y :
0 = S(◊, d, y)
0 Ø g(◊, y)

J

Probabilistic counterpart, with
chance constraints instead of
worst-case

Feasibility Test

‰(d) := max
◊œ�,y

Îg(◊, y)ÎŒ

s.t. 0 = S(◊, d, y)

‰(d) Æ 0: robust feasibility
‰(d) > 0: infeasible scenarios�

Global optimization required in the
presence of nonconvex constraints

PSfrag replacements
D

d1

d2

degrees of freedom

Feasibility Index – Design Centering

max
�

V(�)

s.t. ’d œ B(�),
0 Ø max

◊œ�,y
Îg(◊, y)ÎŒ

s.t. 0 = S(◊, d, y)�

Global optimality certificate required
for inner problem, desirable for outer
problem
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Robust Flexibility Analysis

Flexibility Set

D :=

I
d

-----

’◊ œ �, ÷u œ U , ÷y :
0 = S(◊, d, u, y)
0 Ø g(◊, u, y)

J

Probabilistic counterpart, with
chance constraints instead of
worst-case

Feasibility Test

‰(d) := max
◊œ�,y

min
uœU

Îg(◊, u, y)ÎŒ

s.t. 0 = S(◊, d, u, y)

‰(d) Æ 0: robust feasibility
‰(d) > 0: infeasible scenarios�

Global optimization required in the
presence of nonconvex constraints

PSfrag replacements
D

d1

d2

degrees of freedom

Flexibility Index – Design Centering

max
�

V(�)

s.t. ’d œ B(�),
0 Ø max

◊œ�,y
min
uœU

Îg(◊, u, y)ÎŒ

s.t. 0 = S(◊, d, u, y)�

Global optimality certificate required
for inner problem, desirable for outer
problem
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Challenges in Robustness and Flexibility Analyses

How to solve bi-level or multi-level nonconvex optimization formulations with
embedded dynamic systems?

Rigorous algorithms exist for steady-state counterparts, but they are cursed
Tailored relaxation strategies vs.Ωæ Sampling-based approximation strategies�

Opportunity for surrogate-based optimization techniques

How to handle time-varying uncertainty?

How to devise e�ective computational platforms?
Both modeling and numerical solution
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Challenges in Robustness and Flexibility Analyses

Scenario-Integration Optimization
[Abel & Marquardt, AIChE J, 2000]

Account for possible failure scenarios
alongside a nominal scenario

Scenarios may have di�erent dynamics,
constraints, objectives, degrees of freedom

Scenarios may be triggered at any time�
Multi-level dynamic optimization problems

¶ Cover 300m in minimum time

¶ Do not hit the wall at 350m in

case of break failure to 10% of

nominal breaking capability

Robust-to-Dynamic Optimization
[Ahmadi & Günlük, ArXiv, 2018]

Policy should remain feasible at all times
despite dynamic drift:

min
x0

;
f (x0)

----
x(t, x0) œ �, ’t Ø 0
u.t.d. ẋ(t) = g(x(t))

<
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u.t.d. ẋ(t) = g(x(t))

<

B. Chachuat (Imperial College) Uncertainty in Dynamic Processes 25 June 2018 37 / 38



Challenges in Robustness and Flexibility Analyses

Scenario-Integration Optimization
[Abel & Marquardt, AIChE J, 2000]

Account for possible failure scenarios
alongside a nominal scenario

Scenarios may have di�erent dynamics,
constraints, objectives, degrees of freedom

Scenarios may be triggered at any time�
Multi-level dynamic optimization problems

¶ Cover 300m in minimum time

¶ Do not hit the wall at 350m in

case of break failure to 10% of

nominal breaking capability

Robust-to-Dynamic Optimization
[Ahmadi & Günlük, ArXiv, 2018]

Policy should remain feasible at all times
despite dynamic drift:

min
x0

;
f (x0)

----
x(t, x0) œ �, ’t Ø 0
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“To be uncertain is to be uncomfortable, but to be certain
is to be ridiculous.” – Chinese proverb

Thank you very much for your attention!
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