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Process systems engineering for 
the food, energy and water 

(FEW) nexus

Brent Young & Bing Li

Agenda
• Food Energy Water (FEW) nexus
• The Southern Hemisphere ”Down Under” 

(actually NZ) perspective
• Big data and PSE
• Challenges from dairy processing 
• Resource recovery from wastewater for food 

production
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“is about understanding and m anaging often-com peting 
interests while ensuring the integrity of ecosystem s“*

*  F o o d  a n d  A g ricu ltu re  o rg a n iza tio n  o f th e  U n ite d  N a tio n s , W a te r– e n e rg y– fo o d  n e xu s , 2 0 1 8 . 

( F A O , 2 0 1 8 ) 

FEW nexus
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Big Data and PSE

Big Data and PSE
• Digital Tsunami, disruption, exponential 

complexity

• But hopefully provides better business & operational insight

• What is big data?  (large data volumes; shapes, sizes, colour)
• It is not a thing, it is a journey
• Problems too big to fit on you desktop, 

using your familiar tools

• Requires skills in:
• Signal processing, optimisation, image processing
• Analytics, statistical learning, machine learning, 

database design Sounds a bit like PSE! 
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Som e assum ptions - about us, or at least our U/Gs!

– Probably a ‘trad itional’ m odelling &  stats background

– Probably m ore com fortable w ith:
• Physical-chemical based models, fine-tuned with 

regressed (x,y) data (i.e. curve fitting)
• Models used for prediction/simulation 

(but not wider uses)
• Probably a little sloppy on model validation 

(cross-validation, updating, etc.)

– Probably watching applications in Natural language 
processing, im age recognition, autom ated solv ing of 
ill-posed problem s and th ink:

• Is this relevant to us?
• Tools for classification (categorical/nominal)?
• An augment to ‘traditional’ tools?

The 4 Dimensions of Big Data
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• 4Vs: are these all re levant?

• W hat vs W hy?
– Many businesses not interested in the “Why”

– The “Why” oft ignored or irrelevant
– Not the case in the processing industries

• Recent CEP B ig Data Analytics Survey…

Big Data and PSE

B i g  D a t a  A n a l y t i c s  i n  C h e m i c a l  E n g i n e e r i n g ,  F e b  2 0 1 7 ,  

L u  &  C a s t i l l o  ( D o w )
Actually we’ve done 
this for some time! 

PSE Challenges from diary 
processing quality prediction 

research
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1st step:  Look at the data 
(often underestimated)
Sheer volume of plots

– Huge amounts of data & plots
• T o o  m a n y  t o  s e n s ib ly  r e a d  &  c o m p a r e ?

• A t  w h a t  f r e q u e n c y ?  

– What are our intentions for the plots?
• H o w  t o  e x p lo it  H u m a n ’s  u n iq u e  a b i l i t y  t o  in s t a n t ly  

s p o t  t r e n d s / p a t t e r n s ?

• D o n ’t  b ia s  r e s u lt s  ( p o o r  c h a r t  d e s ig n ,  g r a p h ic a l  l ie s )

• P a p e r  v s  s c r e e n  ( s t a t ic  v s  a n im a t io n ,  e x p lo r a t o r y )  

– How to be selective with the data?

“Simple” things: plotting/visualisation

Do simple things first
• Easy to spot mistakes if you plot the right things

• Exploit humans
– H o w  t o  e x p lo it  t h e  u n iq u e  H u m a n  a b i l i t ie s  t o  in s t a n t ly  

s p o t  t r e n d s / p a t t e r n s ?  

– P a p e r  v s  s c r e e n  ( s t a t ic  v s  a n im a t io n ,  e x p lo r a t o r y )
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Variation/Uncertainty

3 0 0 0  p H  t r e n d s  f o r  c r e a m  c h e e s e  f e r m e n t a t io n

( 1  y e a r ,  a l l  v a t s )

• 1 / 2  d a y  d a t a  p r e p

• 1  d a y  p lo t t in g

• 1  v a t
• W h a t  is  th e  a c tu a l v a r ia n c e ?

• A r e  th e  t r e n d s  p a r a l le l  ( b ia s  e r r o r s )

• I s  th e r e  a  t im e  d e p e n d e n c e ?  

What statistics apply?
Traditional Stats
• Sm all to m edium  problem  

sizes

• Independent, identically 
d istributed data sets

• Manually com putable &  
tractab le: C losed form  
algorithm s

• Strong unverifiab le 
assum ptions (linearity, 
norm ality)

• Statistical inference
• Statistical optim ality

Computational Stats
• Very large problem  sizes

• Non-hom ogeneous data 
sets

• Com putationally intensive; 
Num erically tractable 
(iteration)

• W eak or no assum ptions

• Structural inference
• Statistical robustness

R e f :  W e g m a n ,  1 9 8 8  ( M a t r in e z ,  p 3 )
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What is an appropriate model?
Linear regression

– Easy to fit, easy to interpret, 
– Too large, marginal results, 

global models too ambitious ? 
Latent variables (PCR)

– Smaller models, 
(but use all variables)

– How to interpret?
Build small & sparse models
• Lasso

– Great at bias, 
good for relative importance

• Regression trees
– Easy to explain, unwieldy to use, 

grow large & need pruning – how?
• Black box models

– Why drop known phenomena?

Issues/Challenges
Meaningful data
• Most data is happenstance collected passively

• Data is often information poor (despite big). Not enough “bad batches”, 
hard to spot, care with cleaning
– Up and down re-sampling

• Limited value for predictive activity 
Multiple data structures

• P, F, T is scalar, NIR is a vector, HSI is a matrix cube 
• Fuse & align this data
• Data with high time resolution leads to over-parameterized models

– Data “wrangling” to tidy and align data takes 50-80% of analysis time
A-priori knowledge
• Usually available; don’t throw it away. Also capture uncertainty. 
• Big data methods are black-box. 

R e f :   B ig  D a ta :  C h a l le n g e s  &  F u tu r e  r e s e a r c h  D ir e c t io n s

R e is ,  B r a a tz &  C h ia n g ,  2 0 1 6



9

Resource recovery from 
wastewater for food production 

• Industry 4.0 based 
- Cyber—Physical System
- Information optimized 

• Energy neutral 
- Anaerobic digestion
- Solar/H2/Biodiesel

• Resource oriented
- Carbon source/Nutrients
- Precious metal/heavy metal
- Water: Cascade utilization/effluent reuse

• Location matters

Future wastewater treatment
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• Novel Concepts/Plants/Processes
(e.g. P recovery via struvite precipitation)
– Technology readiness level?

– Optim ization and control opportunities�

• Multi-scale, multi-process, multi-objective
- Socia l, environm ental, econom ical objectives

- optim ization and control  

- uncertainty m atters

Challenges 

Opportunities 

Resource recovery for food production  

Integrated 
system
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Resource recovery for food production  

Iterative process

Identify streams 

Feedback loop

Process systems engineering for 
the food, energy and water 

(FEW) nexus

Brent Young & Bing Li


