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Let’s define “Molecules”

Processing materials Chemical products
= For mm_om_.m_”_OJ. :m:m_oO_._”_ Gani, Ng, Comp Chem Eng, 2015, 81, 70
_.mmO_”_OJ_ heat control = Molecular U—.OQCO_“m
— Solvents, adsorbents, — API, plastic
membranes

» Formulated products

— Drug product, personal care
products, paints

= Devices / Functional
products (barriers, delivery)

— transdermal patch, filter
cartridge

— Catalysts, additives
— Heat transfer fluids
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Outline

» WWhat molecules can do for PSE
— Why design processing materials?

— Challenges in integrated molecule and process
design

= What PSE can do for molecules?
— “Simple” mixtures
— Embedding experiments in product design

Imperial College
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IMPACT OF PROCESSING MATERIALS
ON PROCESS PERFORMANCE

Imperial College
London
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Process feasibility

Ring-closing metathesis with a Grubbs Il catalyst®"
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Batch extractive distillation

Solvent

Use of decanter

Separation time depends on:

- .
N

Solvent
DMAC

= the reflux ratio profile
= the reboiler duty profile

= the solvent

Low water content

Product ‘
DMAC
Water Solvent
Solvent No decomposition Water
(low temperature) CHs;
NN 18 hours 15 hours
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Capital cost
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Environmental impact
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Anti-solvent / cooling crystallisation

Liquid phase L
Moles of

dissolved API

L
Napro

Moles of solvent
mixture nk

Temperature T,

ami— §
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 Solvents as problem

Liquid phase L
Moles of dissolved

L L
APl ngp; < Nigpro

Moles of solvent
mixture nk = nk,

Temperature T < T,

Solid phase
Moles of APl n3,,

Temperature T < T,

O 4 kg solvent / kg API
O millions of tons used annually

0O 60% of energy used in API production
0 50% of GHG emissions

Jiménez-Gonzalez, Curzons, Constable, Cunningham, Clean Tech Env Pol, 2005,
Jiménez-Gonzalez et al., Org Process Res Dev., 2011, 15, 900.
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Environmental impact

Anti-solvent / cooling crystallisation
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The choice of processing materials can impact
all aspects of process performance

feasibility productivity
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DESIGNER MOLECULES FOR
DESIGNER PROCESSES?
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The research goal

Can we develop PSE tools that embed molecular decisions
as an integral part of process synthesis / design?

e Mo bg e
a2 § 8 XN

Andres-Martinez &
Flores-Tlacuahuac
Definition and
quantification
of meaningful
design metrics

Algorithms: Integration of
complexity, advanced
nonconvexity, property
infeasibility prediction
methods in
overall design
problem

Quantification /
mitigation of
the impact of
uncertainty in

property
prediction on
design

Imperial CO
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What makes a good metric?

» Many advances have been based on property metrics
— they are easiest to aim for and intuitive
— they are of limited value in the context of process design

» [t can be difficult to trade-off competing objectives
— CO, capture by chemisorption

Short name ID Vm P,
2AP R1
MMEA R3 n
EMEA R4 _
MPA R8
DEAB RS

¢ RED
: |
2A1B c1 “
2A1PN c2 _
IPAE C6 _
DBA c11
4AP c17 _

Papadopoulos et al, MSDE, 2016
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What makes a good metric?

= Much of the literature is based on property metrics
— they are easiest to aim for and intuitive
— they are of limited value in the context of process design

= Difficult to trade-off competing objectives

* Improvements in properties do not necessarily lead to
Improvements in process performance
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Metrics for molecular and process design

= Molecular structure is just another process variable

* The same performance metrics apply as for process optimisation
— properties don’t have an intrinsic value

= We face the same challenges as for other process optimisation
problems
— cf. yesterday’s discussion; sustainability of industrial systems?

— key question is how to estimate the sustainability of processes
containing novel processing materials

» standard green chemistry concepts are not sufficiently holistic

Imperial College
London
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The research goal

Can we develop PSE tools that embed molecular decisions
as an integral part of process synthesis / design?

e Mo bg e
a2 § 8 XN

Andres-Martinez &
Flores-Tlacuahuac

Definition and
quantification
of meaningful
design metrics

Algorithms: Integration of
complexity, advanced
nonconvexity, property
infeasibility prediction
methods in
overall design
problem

Quantification /
mitigation of
the impact of
uncertainty in

property
prediction on
design
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ORC fluid and cycle design
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= Can we design algorithms to explore the design space reliably and efficiently?
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The research goal

Can we develop PSE tools that embed molecular decisions
as an integral part of process synthesis / design?
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Property prediction needs
in molecular and process design

Molecular structure Material structure

N e
- V4

Predictive structure-property models
N '

Properties

Equipment

Process

Performance metrics
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Transferability in structure-property models

» Transferable models central to computer-aided molecular design
— Quantum mechanics
— Molecular simulations (Monte Carlo, Molecular Dynamics)
— Coarse-grained simulations
— Group contribution methods
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Property prediction needs
in molecular and process design

Material structure

Molecular structure

. kinetics environment
thermodynamics
transport S
Solvents: Fluid separations Films: Membrane separations
Heat transfer fluids: Refrigeration Catalysts: Reactions
Equipment Sorbents: Adsorption

Solvents: Crystallisation
Solvents: Reactions

Process

Performance metrics

Imperial College
London



Department of Chemical Engineering

Continuum

“Rapid improvements in our ability to model ? v—

physical and chemical processes at the atomistic 1

scale over the last two decades ...”
Gubbins & Moore

(ms)10° - Mesoscale methods
Lattice Monte Carlo

Brownlan dynamics
Atomistic Dissipative particie
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gure 1. Theory and simulation scales for ab initio (electronic), semiem-

“Admittedly, the of MD precludes replacing | RsEEE
group contribution methods in a combinatorial
approach to molecular design”

Maginn & Elliott

“One also sees fertile interactions developing between molecular
simulators and “systems” (process design and optimization)
researchers. There is if these communities join

forces to address complex process and product design problems with
the help of MC simulations”
Theodorou

Imperial College
London IECR, 2011
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Key challenges

= Many property prediction methods are not well-behaved
— high computational cost (from simulations to QM)
— non-differentiable (MC)
— require the solution of one or more optimisation problems
(MM, QM, or even an equation of state!)
» how do we embed them in process models?
» how do we solve the resulting optimisation problems?

= Many prediction methods are lacking or not sufficiently well developed

— there are great opportunities for PSE researchers to get involved in
property prediction, as users and as developers

— collaboration with physical chemists, molecular simulators

= property prediction methods are not usually designed with process modelling in
mind

Imperial College
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The research goal

Can we develop PSE tools that embed molecular decisions
as an integral part of process synthesis / design?
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Flores-Tlacuahuac

Definition and
quantification
of meaningful
design metrics

Algorithms: Integration of Quantification /
complexity, advanced mitigation of
nonconvexity, property the impact of
infeasibility prediction uncertainty in
methods in property
overall design prediction on
problem design

Imperial College
London



;w»\ﬂo Centre for Process Systems Engineering Department of Chemical Engineering

Quantifying / mitigating the impact of uncertainty

* The usual questions apply
— Uncertainty quantification, robust design
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— From Monday: goal-oriented uncertainty modelling; uncertainty propagation
among subsystems

* |n addition, when it comes to property models, accuracy is
(sometimes) a matter of choice

— How to choose or even develop structure-property models that minimise
uncertainty for the problem of interest?

Imperial College
London
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Models of water

= Which properties were used in developing the model?
= What impact does this have on the performance of the model?

® “Standard model”
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Effect on mixture properties — water + CO, + monoethanolamine

Extended model Standard model
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Not so transferable models

* How do we choose the right model for our purpose?
— iterative design from a generic model to a more targeted model
— a library of Pareto-optimal models
— automatic re-estimation of transferable parameters

— can we base our choice on process metrics rather than property
metrics?

Imperial College
London



I

P Centre for Process Systems Engineering Department of Chemical Engineering

Four challenges along the way

Can we develop PSE tools that embed molecular decisions
as an integral part of process synthesis / design?

-
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Definition and
quantification
of meaningful
design metrics

Quantification /
mitigation of
the impact of
uncertainty in

Algorithms: Integration of
complexity, advanced
nonconvexity, property
infeasibility prediction
methods in
overall design
problem

property
prediction on
design
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WHAT CAN PSE DO FOR
MOLECULES?

Imperial College
London
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The discovery process

Designing a product that does the right thing
and can be manufactured ... optimally

Molecular
structure

XX

Physical Material
properties performance

» & . & .
R —
T —
W w— aninn

Adjiman et al., 2017, http://hdl.handle.net/10044/1/53609

Manufacture Function

= Current limitations:
— Costly, time-consuming, highly iterative process

— Lack of fundamental understanding of key physical phenomena limits
iInnovation

Imperial College
London
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“Simple” mixture design

that optimises a
erformance
measure.

up ton
- components

ingredients

Design a
product with:

ingredients

= Where the relevant structure-property models exist, we can formulate a
design problem

— applications to solvent design, adhesive design, lubricant design
— key challenges in algorithm design

= combinatorial nature of problem

» high degree of nonlinearity

= solutions are unlikely to be optimal

» need a step change in numerical methods

— what about manufacturability?

Imperial College
London
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Towards manufacturability / structured products

Material
performance

SN VAN

Predictive challenges along the chain:

— molecular structure - material structure
— structure-processing-function

— material stability

Molecular
structure

Physical
properties

How do we know how easy it will be to make a novel molecule or
material?

— measuring manufacturability
— predicting manufacturability

Imperial College

London
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Discovering “manufacturable” drug candidates

How to provide
sufficient quantities
of material for early
stage screening of
drugs?

Continuous set-up
for reaction
screening
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High throughput reaction “optimisation”
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Discovering structured products

* High throughput microfluidic SAN/XS (Small-Angle Neutron / X-ray

Scattering)

XS H & LF id BT R &k &r &0 37 RF A & 3887 %

Composition scan
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Adamo et al., Soft Matter, 2018
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1. polydisperse emulsion for screening
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High ::.o:m:_u_: experimental (HTE) platforms

An exciting opportunity to acquire much needed data, including data
relating structure and processing

Currently used principally to gather a lot of data and obtain insights
or maps of behaviour

PSE questions
— what is the best set of experiments?

how can we use the data to build models that support product
design?

product design with HTE in the loop?

More questions — data processing
— too much data goes to waste
how can it be interpreted

Imperial College

London
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Concluding remarks

* Molecules/materials as process variables
— Metrics and algorithms: a twist on the usual PSE challenges

— Property prediction:

= how can we make further use of state-of-the-art property
prediction techniques?

* do we need to engage in the development of new or modified
methods for structure-property models?

» what is a good property model? Tailoring transferable models
to reduce uncertainty

* Product design
— Metrics (manufacturability) and algorithms
— Embedding emerging HTE techniques into PSE tools

Imperial College
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