

THE ADVANCED PROCESS MODELLING COMPANY

Pharmaceutical Process & Product Development: What can Process Systems Engineering contribute?

Costas Pantelides

FIPSE 30 August 2012

Outline

1. Systems Engineering

2. Pharmaceutical Systems

- a. Drug substance manufacturing
- b. Drug product manufacturing
- c. Oral absorption & pharmacokinetics

3. Systems-based Pharmaceutics

- 4. Fundamental challenges & opportunities
 - a. Materials properties & behaviour for Systems-based Pharmaceutics
 - b. Design Space in pharmaceutical manufacturing

Acknowledgements

PSE

- Dr Sean Bermingham
- Dr Alejandro Cano
- Dr Hassan Mumtaz
- Dr Mark Pinto

- Imperial College London
 - Prof. Claire Adjiman
 - Dr Panos Karamertzanis
 - Dr Andrei Kazantsev
 - Mr Manolis Vasileaidis

Pfizer

- Dr Salvador Garcia-Muñoz
- Dr Ravi Shanker

- University College London
 - Prof. Sally Price

1. Systems Engineering (a short introduction for people in pharmaceutics)

Science

- aim: understanding of nature
- examples: Physics, Chemistry, Biology/Biochemistry

Engineering

- aim: manipulation of nature to achieve specific objectives
- examples:
 - Civil/Mechanical/Electrical/Chemical Engineering
 - Pharmacy
 - Medicine

- Systems: complex entities comprising multiple interacting components
 - potentially complex components
 - potentially complex interactions
 - →complexity can arise both from the components themselves and from their interactions
- *Engineering* : focuses on achievement of specified objectives
- Distinguishing characteristics:
 - Mathematical models are used to capture scientific knowledge on component behaviour
 - not necessarily "first-principles" models
 - *Model integration*: from components to systems
 - Model-based activities use advanced mathematical techniques to extract value out of models

2. Pharmaceutical Systems

Key drivers in pharmaceutical industry

External

- end-use functionality & effectiveness
- other product quality attributes (e.g. stability)

Internal

- R & D efficiency
- time-to-market
- efficiency of manufacturing
- competitiveness & competition

Regulation

ICH Q8 (3):

"Quality: The suitability of either a drug substance or drug product for its intended use. This term includes such attributes as the identity, strength, and purity."

Economic viability

Pharmaceutical systems – I

Step 1: Drug Substance manufacturing Producing the active pharmaceutical ingredient (API)

- Reaction
- Distillation
- Crystallisation
- Agitated filter drier
- Centrifuge (horizontal; vertical)
- Single plate filter
- Drier (pan; tray/shelf))
- Milling (wet; dry)
- Sensors

Step 2: Drug Product manufacturing Producing the drug delivery form (tablet, capsule etc.)

Imperial College

London

- Dry blending
- Continuous mixing/blending (PF/CST/other)
- Delumping (eliminate soft aggregates)
- Screw conveyor / feeder
- Granulation (fluid bed; high-shear wet)
- Drying (fluid bed; tray; spray)
- Roller compactor;
- Milling
- Fluid bed coating of particulates
- Hopper/storage: transfer to tablet press /capsule filling machine
- Encapsulation
- Compaction
- Coating of tablets

• • • • • • • • • • • • • • • • • •

Decisions

Objectives/KPIs

- Many decisions & constraints; complex interactions
- → Process Systems approach: effective/efficient exploration of decision space

BUT...

- incomplete knowledge/understanding of parts of the system
- inability to handle modelling complexity of entire system
- organisational silos & barriers

→ from real to surrogate objectives

2a. Drug substance manufacturing

- Closest to chemicals/fine chemicals sector, e.g. in terms of unit operations
 - reaction, distillation, crystallisation, filtration, drying...

Key challenges for model-based engineering approach

- complex molecules
- complex chemistry
- batch/semi-batch operations
- (some) solids
- mixing imperfections/scale-up
- batch-to-continuous conversions

Hybrid multizonal/CFD equipment modelling Agitated tank equipment

Imperial College London

Bezzo, Macchietto & Pantelides, Comput. chem. Engng. (2004), 28, 501-511; AIChE J. (2005), 28, 1169-1177

Optimise addition profile to minimise impurity formation

- Eliminate mixing imperfections
- Keep reactor out of "danger region"
 - low pH, high temperature
- Optimal recipe validated experimentally

- Models based on 1-dimensional particle size distributions (PSD) are now routine from technological point of view
- Models incorporate all key phenomena
 - nucleation (primary + secondary)
 - growth
 - attrition
 - agglomeration
- Model-based engineering approach
 - 1. model identification based on experimental measurements
 - requires small number of batch experiments
 - 2. dynamic optimisation for recipe optimisation
 - 3. model-based scale-up

Solution crystallisation case study – 1 (GSK/PSE*)

*Bermingham, Cocchini, *"Model-Based Decision Support for Design and Operation of Pharmaceutical Crystallisation Processes: Efficient Workflows for Validation Against Experiments and Scale-up"* Paper #84c, AIChE Annual Meeting, Minneapolis, October 2011.

London

Imperial College

- Batch seeded cooling crystallisation of an API from an organic solvent
- Sampling strategy
 - solute concentration and PSD throughout the crystallisation
 - not standard sampling regime
- Data set of 8 experiments varying
 - agitation
 - supersaturation
 - seed PSD
 - T seeding
 - cooling rate

Ехр		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
API	g/I	69.3	66.8	67.0	47.0	52.4	45.7	64.4	63.8
Seed Load	%	0.7	0.5	0.4	0.5	0.5	0.7	0.5	0.4
Stirrer speed RPM		216	407	217	220	217	379	407	217
Seeding Temp	degC	70	70	70	70	70	70	70	70
Holding time	hrs	3.0	2.0	2.0	6.0	3.0	6.0	2.0	2.0
Final Temp	degC	5	5	5	5	5	5	5	5
Cooling time	hrs	1	3	3	no cooling	1	1	3	3
Rate of cooling	deg/min	1.08	0.36	0.36	na	1.08	1.08	0.36	0.36
Holding at final temp	hrs	14	14	14	0	14	14	14	14
Total exp time	hrs	18.0	19.0	19.0	6.0	18.0	21.0	19.0	19.0

Solution crystallisation case study – 1 Experimental data

- Solute concentration (HPLC)
- PSD (laser diffraction)
- Morphology (microscopy)

Solution crystallisation case study – 1 Dominant mechanisms and hypothesis

- Process designed to induce high level of nucleation following seeding
- Dendritic breeding/ activated surface nucleation
 - nucleation as a result of dendritic growth on surface of seed crystals
 - mainly occurring at high supersaturation, typically post seeding.
- Throughout the process
 - growth of seed crystals and the nuclei
 - attrition (contact nucleation)
 - **breakage** (evidence of breakage observed at low supersaturation)

Solution crystallisation case study – 1 Key physical phenomena

Dendritic breeding

Imperial College London

$$- B_{s} = k_{s} \frac{D_{AB}}{d_{m}^{4}} \exp\left(-\pi \frac{[K \ln(C_{c}/C^{*})]^{2}}{v \ln s_{a}}\right); \qquad J_{db} = B_{s} A_{T}$$

• Growth
- mass transfer
$$G(L) = k_d(L) \left[\frac{C_{bulk} - C_{int}(L)}{\rho_{crys}} \right] \quad D_{AB} = \alpha \frac{kT}{\pi \eta \frac{d_m}{2}}$$

$$k_d \quad L = \frac{D_{AB}}{L} \left[2 + 0.8 \left(\frac{\overline{\varepsilon} L^4}{v_L^3} \right)^{1/5} \left(\frac{v_L}{D_{AB}} \right)^{1/3} \right]$$
- surface integration
$$G(L) = k_g \exp \left(\frac{-E_{A,g}}{RT} \right) \left[\frac{C_{int}(L) - C_{sat}}{\rho_{crys}} \right]^g$$

Breakage (taken from milling literature)

Vogel & Peukert, Chem. Eng. Sci. 60 (2005) 5164 – 5176

Parameter	Initial Guess	Optimal Estimate		
Width parameter RR distribution Location parameter RR distribution	3.00E+00 2.60E+02	3.11E+00 2.33E+02		Dendritic breeding not active?!
Dendritic breeding - K	4.14E-01	4.14E-01		
Dendritic breeding - In(ks)	-3.20E+01 1.00E+00	-3.85E+01 🦯		Increased mass
Stokes-Einstein - alpha		1.75E+00		transfer and
Surface integration - kg	5.97E-05	1.00E-04		to enable
Surface integration - g	1.00E+00	1.25E+00		rapid depletion
Surface integration - Ea,g	5.50E+03	2.85E+03		of supersaturation
Breakage - k	2.00E+02	3.13E+02		Significant
Breakage - yprime	1.00E-04	4.22E-04		breakage

Underestimation thought to be due to inherent error in laser diffraction measurement of PSD of non-spherical particles

- Exp. 4: no cooling, desupersaturation only
- Good fit of solute concentration and d_{50}
- Model underestimates fines and coarse tail of PSD

London

no seeding

$$J_{prim} = A_0 \exp\left(\frac{-16\pi\sigma^3 v_0^2}{3k^3 T^3 \ln S^2}\right)$$

1

2-step growth mechanism

*Garcia-Muñoz, Yu, Pinto, Bermingham, *"A Model-Centric Solution to Link Content Uniformity Targets with API Particle Size Specifications and Process for a QbD Exercise"* Paper #202d, AIChE Annual Meeting, Minneapolis, October 2011.

$$\begin{split} G(L) &= k_d \left(L
ight) \Biggl[rac{C_{bulk} - C_{int}(L)}{
ho_{crys}} \Biggr] \ &= k_g \exp \Biggl(rac{-E_{A,g}}{RT} \Biggr) \Biggl[rac{C_{int}(L) - C_{sat}}{
ho_{crys}} \Biggr]^g \end{split}$$

Imperial College London Solution crystallisation case study – 2 Recipe optimisation

- Key focus: constraints on API particle size distribution
 - compliance with targets on Content Uniformity of tablets

- **Objective**: minimise batch time
- **Control**: temperature ramp rate

End-point constraints

- attain content uniformity targets
 - $d_{50,target}$ -1 < d_{50} [µm] < $d_{50,target}$ +1
 - $d_{90}/d_{10} [-] < d_{90}/d_{10}$,target
- ensure yield
 - $-\sigma$ [-] = (c-c_{sat})/c_{sat} < 0.001
- stop crystallisation at end of batch
 - T_{target} -0.1 < T [^{o}C] < T_{target} +0.1

Path constraint

ensure crystal purity: G [μm/s] < 0.01

FS.CR.ZONE(1).KINC.MASS CONC INT(.1.1)

FS.CR.ZONE(1).KINC.SP.MASS_CONC_LIQ(.2) FS.CR.ZONE(1).KINC.MASS_CONC_INT(,1,1)

FS.CR.ZONE(1).KINC.SP.MASS_CONC_LIQ_SAT(,2) FS.CR.ZONE(1).KINC.MASS_CONC_INT(,1,51)

- Improved product quality control
 - stable continuously controlled operations
- Efficient manufacturing
 - lower capital cost
 - lower operational cost
 - smaller footprint
 - Better handling of "difficult" products (e.g. metastable polymorphs, optical isomers)
 - ability to operate in narrow region

Batch or Continuous ?

Choice depends on...

- difference in economics
- material to be produced
- scale of production
- certainty of demand
- in-house experience and the willingness to invest in non-standard practice / workflows

Require quantitative assessment & comparison of optimised alternatives

Drug substance manufacturing Crystallisation: from batch to continuous

- Batch
 - Easy scale-up of recipe from lab to plant
 - Good traceability of off-spec product
 - Freedom to change recipe to ensure high yield / low material loss
 - Easy scale-down of production (reacting to demand)
 - Flexibility in equipment utilization (for other products)
 - Variability of product quality from batch to batch
 - Low plant availability / asset utilization
 - Storage and handling steps
 - Labour intensive

- Continuous
 - High plant availability
 - less maintenance / cleaning
 - Lower capital cost
 - Lower operating cost
 - including manpower and energy
 - Improved product quality control
 - Challenging and (usually) custom process design
 - Poor traceability of off-spec product
 - Complex startup, shutdown and emergency procedures
 - Minimum throughput (turndown) requires better demand planning
 - Energy and raw material cost of startup and shutdown

global_spec

3E01

2E0-

1E0

Relative saturation

Imperial College London

PSe

Multi-stage continuous process

Total volume same as batch case, distributed equally among stages Temperature range (95°C – 25°C) same as in batch case, distributed equally among stages Flowrate = 90% of [batch size]/[batch time]

	S	Exit upersaturation	D50 (μm)	Span (%)	
Batch		0	79.4	78.3	
Continuous					
1-stage		0.303	75.5	157.7	Both D50 and Span
2-stage		0.263	109.1	168.2	increase with more
3-stage		0.239	120.8	170.6	stages
4-stage		0.224	126.7	171.7	(and much higher
5-stage		0.214	129.9	172.2	compared to batch
6-stage		0.208	132.4	172.4	operation
Di imj	imini prov	ishing Un ement	acceptably high		

Imperial College

London

Multi-stage continuous cooling crystallisation

Not quite so simple

	Exit supersaturation	D50 (μm)	Span (%)
Batch	0	79.4	78.3
Continuous			
6-stage (simple)	0.208	132.4	172.4
4-stage (simple)	0.224	126.7	171.7
4-stage (volumes: 10%, 20%, 30%, 40%)	0.152	124.1	175.5
4-stage (++ ∆T: 40%, 30%, 20%, 10%)	0.063	118.7	171.2
4-stage (++ flowrate reduced by 1/6)	0.052	119.2	170.1
4-stage (++ total volume increased by 50%)	0.034	119.4	168.1

Some improvement achieved More formal optimisation approach required

 Closest to chemicals/fine chemicals sector, e.g. in terms of unit operations

- reaction, distillation, crystallisation, filtration, drying...
- Key challenges for model-based engineering approach
 - complex molecules
 - complex chemistry
 - batch/semi-batch operations
 - (some) solids
 - mixing imperfections/scale-up
 - batch-to-continuous conversions

...mostly within scope of existing technology?

Potential pitfalls

- 1. Bad choice of models
- 2. Insufficient/inappropriate coupling of models & experimentation
- 3. Lack of understanding/use of optimisation technology

Failure to derive sufficient value from modelling investment ?

2b. Drug product manufacturing

Drug product manufacturing

Imperial College London

Quite different to standard chemicals sector

 mostly solids-based operations/transformations

- Dry blending
- Continuous mixing/blending (PF/CST/other)
- Delumping (eliminate soft aggregates)
- Screw conveyor / feeder
- Granulation (fluid bed; high-shear wet)
- Drying (fluid bed; tray; spray)
- Roller compactor;
- Milling
- Fluid bed coating of particulates
- Hopper/storage: transfer to tablet press /capsule filling machine
- Encapsulation
- Compaction
- Coating of tablets

Drug product manufacturing & Process Systems Engineering	50
Challenges & potential contributions	

Key challenges

- complex materials
 - multiple solids phases
 - particle size-dependent chemical composition
- incomplete understanding of the physics
- handling of solids-related aspects
 - population balances
 - potentially multidimensional
 - modelling of integrated processes
- equipment scale-up

- Process Systems Engineering has limited potential for contributing to new fundamental science
- BUT it can provide a systematic, formal framework for
 - capturing all existing knowledge & understanding
 - first-principles or empirical
 - integrating knowledge across entire processes
 - deriving maximum value from existing knowledge
- It can also support new science by
 - identifying & prioritising needs
 - helping in assessing domain knowledge (e.g. model discrimination)

Modelling of integrated solids processes

Typical examples

Compaction process

Spray drying process

Drug product manufacturing – Example Agglomeration process optimisation

- Fine particles to be agglomerated
- Product particles to be within certain size range
- All other particles recycled
 - coarse ones crushed in a mill
- OPEX a strong function of recycles of fine & coarse particles
 - \rightarrow need to balance OPEX and CAPEX (agglomerator, mill)

London

Agglomeration model validation Agglomeration kernels

- Size-independent kernel
 - agglomeration rate independent of particle size
 - all events equally favoured
- Smoluchowski's shear kernel
 - large-large events favoured
- Equipartition of kinetic energy kernel (EKK)
 - large-small events favoured

$$\beta = \beta_0 (\mathbf{x}, T, \omega, \dots, t) (L_1 + L_2)^2 \sqrt{\frac{1}{L_1^3} + \frac{1}{L_2^3}}$$

For a given range of operating conditions (temp, binder content etc.)

- which agglomeration kernel best describes system?
 - what are the values of the kernel parameter(s)?

$$\beta = \beta_0 \left(\mathbf{X}, T, \boldsymbol{\omega}, \dots, t \right)$$

$$\beta = \beta_0 (\mathbf{x}, T, \omega, \dots, t) (L_1 + L_2)^3$$

$$\beta = \beta_0 (\mathbf{x}, T, \omega, \dots, t) (L_1 + L_2)^T$$

$$\beta = \beta_0 (\mathbf{x}, T, \omega, \dots, t)$$

Agglomeration experiment #1

Fine powder, binder

continually added during

Quantiles measured every 20 minutes

Imperial College London

Lab-scale fed-batch agglomerator

experiment

Unit initially contains coarse particles

Agglomeration model validation - Results after 1st experiment Imperial College Size-independent kernel

5% quantile - not so good

50% quantile - good fit

Flowsheet.agglomerator.holdup_sensor.quantiles 4.7E2 4.5E2 훈 4.3E2 4.1E2 3.9E2 5000 6000 7000 1000 2000 3000 4000 Time # Measurements 7: Major iteration no guantiles = 2

10% quantile - good fit

90% quantile - good fit

Agglomeration model validation - Results after 1st experiment Imperial College Smoluchowski shear kernel

95% confidence interval: v. large χ^2 Lack-of-Fit test: FAIL

50% quantile - not so good

10% quantile - not so good

5% quantile - bad fit

Agglomeration model validation - Results after 1st experiment Imperial College EKK kernel

95% confidence interval: ±13.5% χ^2 Lack-of-Fit test: OK

5% quantile - good fit

50% quantile - good fit

10% quantile - good fit

90% quantile - good fit

Either kernel could be used in practice

problem

Volume of material within the tank should not exceed 95% of tank volume during experiment

Agglomeration model validation - Results after 2nd experiment Imperial College Size-independent kernel

5% quantile - bad fit

10% quantile - good fit

50% quantile - good fit

90% quantile - good fit

Agglomeration model validation - Results after 2nd experiment Imperial College EKK kernel

95% confidence interval: \pm 2% χ^2 Lack-of-Fit test: OK

5% quantile - good fit

50% quantile - good fit

10% quantile - good fit

90% quantile - good fit

2c. Oral absorption & pharmacokinetics

Processing of oral dosage forms in body

An extremely simplified view

Imperial College

London

PSe

Key factors influencing bioavailability

- Drug physical properties
 - solubility, hydrophobicity, pKa
 - dissolution rate
- Drug formulation
 - immediate vs. modified release
 (delayed, extended, sustained)
- Gastro-intestinal tract physiology
 - gastric emptying rate (GER)
 - fed vs. fasted state
- Metabolism
 - enzyme induction or inhibition by other drugs and foods
- Personal factors (age, disease state)
 - may affect both GI physiology and pharmacokinetics

London

Imperial College

Modelling of oral absorption

Imperial College

London

PSe

K. Sugano, Expert Opin. Drug Metab. Toxicol. (2009) 5, 259-293.

Modelling of oral absorption

Imperial College PSE

K. Sugano, Expert Opin. Drug Metab. Toxicol. (2009) 5, 259-293.

Increasingly detailed first-principles models are being developed to predict bioavailability ...

...and are being used by the pharmaceutical industry

- Both in-house and commercial tools
 - GastroPlus[™] (Simulations Plus Inc.)
 - Simcyp[™] (Certara Inc.)
 - PK-Sim[®] (Bayer Technology Services)

3. Systems-based Pharmaceutics

Unit Operation Modelling Integrated Process Modelling

Pharmacokinetic Modelling Pharmacodynamic Modelling

- Silo thinking
 - reflected in both tools and organisational structures
- Too many iterations ...
 - between product design and manufacturing process design
 - between subsequent manufacturing steps
 - between bioavailability targets and drug product/process development
- ... and other inefficiencies
 - no central repository of consistent knowledge
 - many, long learning curves

Systems-based Pharmaceutics – I

- Quantify effect of decisions & disturbances
 - uncertainty in process knowledge
 - common cause variability

on Key Performance Indicators

- Critical Quality Attributes
- process economics, operability, safety
- From surrogate objectives to true KPIs

Systems-based Pharmaceutics – II

- Efficiently/effectively explore decision space
 - use advanced mathematics to reduce trial-and-error approaches
- Manage risk by quantifying impact of uncertainty
 - model uncertainties
 - external disturbances, e.g. excipient characteristics

Systems-based Pharmaceutics – III

Illustrative example of

integrated manufacturing/oral absorption modelling

Imperial College

London

4. Fundamental challenges & opportunities

4a. Material properties & behaviour in SbP

Material properties & behaviour for SbP

(a partial view)

Needs

- increased accuracy of prediction
- reduced reliance on experimental data
- Next-generation models (e.g. for crystallisation)
- prediction of behaviour of new materials
- molecular super-structure descriptions
- Incorporation of molecular decisions in optimisation

Material behaviour

Macroscopic models

Material properties & behaviour for SbP

(a partial view)

Thermodynamic phases

Material behaviour

Macroscopic models

Crystalline solid phases

- Most pharmaceutical APIs are in crystalline form
- Polymorphism
 - same API molecule may appear in several crystalline forms ("polymorphs") in nature
 - thermodynamically: one stable, others meta-stable
- Crystalline form determines physical properties affecting both manufacturing & bioavailability
 - solubility, dissolution rate
 - mechanical strength
- Polymorphism is key aspect of drug approval & patent protection
 - → important to identify **all** "stable" polymorphs

Ritonavir (Norvir[®]- Abbott Labs)

Ab initio crystal structure prediction

Unit cell is determined by:

- lattice lengths a, b and c
- lattice angles α , β and γ
- positions of all atoms $\hat{\mathbf{r}}_{ji}, i = 1, ..., N, j = 1, ..., Z$

 $\min_{a,b,c,\alpha,\beta,\gamma,r_{ji}\,|\,(T,P)}G$

All low-energy local minima via effective global search techniques

Karamertzanis & Pantelides (2004) J. Comput. Chem. **26**, 304-323

+PV-TS+PV-TS

+PV-TS

+PV
5th Blind Test for Crystal Structure Prediction Imperial College

Cambridge Crystallographic Data Centre, 2010¹

London

Molecule XX

benzyl-(4-(4-methyl-5-(p-tolylsulfonyl)-1,3-thiazol-2-yl)phenyl)carbamate

- Largest ever molecule considered under blind test conditions
- Entries by 14 research groups worldwide
- Two correct predictions² (Imperial College London, U. Cambridge)
 - Both using Crystal Predictor³ for global search
 - Different methods for final refinement of the structures

1 Bradwell et al. (2011), Acta Cryst. B 67, 535-551.

- 2 Kazantsev, Karamertzanis, Adjiman, Pantelides, Price, Galek, Day & Cruz-Cabeza (2011), International Journal of Pharmaceuticals **418**, 168-178.
- 3 Karamertzanis & Pantelides (2004), J. Comput. Chem. 26, 304-323.

5th Blind Test: Molecule XX

Kazantsev, et al. (2011), International Journal of Pharmaceuticals 418, 168-178.

78. London

Imperial College

Kazantsev, et al. (2011), International Journal of Pharmaceuticals **418**, 168-178.

178. Imperial College London

Overlays of experimental & predicted structures

rms₁ = 0.099 Å

rms₂₅ = 0.197 Å

Ab initio crystal structure prediction

н

Н

Н

Н

 CH_3

L. Yu, Acc. Chem. Res., 2010, 43, No. 9, 1257-1266

Vasileiadis, Kazantsev, Karamertzanis, Adjiman, Pantelides. *Acta Crystallographica B*, 2012, (accepted for publication)

Predicted vs. experimental structure overlays

Good agreement, but stability order not yet quite right

Methodology also applicable to API salts & co-crystals (*but still rubbish for API hydrates*)

Karamertzanis, Kazantsev, Issa, Welch, Adjiman, Pantelides & Price (2009), *J. Chem. Theory Comput.* **5**, 1432-1448. Kazantsev, Karamertzanis, Adjiman & Pantelides (2011), *J. Chem. Theory Comput.* **7**, 1998-2016.

electi

disp/rep

Material properties & behaviour in SbP

(a partial view)

Macroscopic models

Thermodynamic phases

Material behaviour

4b. Design Space in pharmaceutical manufacturing

The multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide assurance of quality

International Conference for Harmonisation: Draft Guidance Q8 (Revision 1)

Regulatory flexibility:

Working within the Design Space is not considered to be a "change"

Design space is proposed by the applicant and is subject to regulatory assessment and approval

Impractical to determine Design Space experimentally

model-based approach

Design Space – a graphical perspective

Imperial College London

Design Space – a graphical perspective

Imperial College London

Design Space – a graphical perspective

Imperial College London

- Quantification of "process flexibility" (i.e. size of Design Space)
 - a key concern of process systems research from mid-1980s to late 1990s
 - cf. Halemane & Grossmann, AIChE J, 29, 425-433 (1983); Dimitriadis & Pistikopoulos, Ind. Eng. Chem. Res., 34, 4451-4462 (1995); Mohideen et al., AIChE J., 42, 2251-2272 (1996)
- → Decide on how to measure the size of the Design Space
 - ... then design the process so as to maximise it

Design Space: a simple example (paper #417f, 2009 Annual AIChE Meeting, Nashville, TN)

Imperial College

London

- Batch reactor 2A -> B
 - require at least 80% B in final product

Process parameters

- operating temperature, T
 - assumed constant over batch
- processing time, au
- Optimal nominal values
 - T = 287K
 - $-\tau$ = 260 min

Design Space in terms of process parameters T, τ

Imperial College

Londor

Specifications

- At least 80% of B in final product
- Economic performance of at least \$128/min
 - 80% of theoretical optimum of \$160/min

A simple example 2. Superscribing hyper-rectangle

Imperial College

London

A simple example 3. Feasible region determination

Imperial College

London

PSe

A simple example 4. Inscribed max-volume hyper-rectangle

Imperial College

London

Design Space

- $T \in [282.3 \text{ K}, 292.1 \text{ K}]$ ____
- $\tau \in [276.5 \text{ min}, 319.5 \text{ min}]$

is guaranteed to deliver

- a product with at least 80% B
- an economic performance of at least \$128/min
- Algorithms exist for determining an inscribed hyper-rectangle directly for transient problems of large dimensionality

(e.g. Samsatli, Sharif, Shah, Papageorgiou (2004), AIChE J., 47, 2277-2288)

Londor

BUT...

- For multidimensional problems, computed ranges for individual variables tend to be very narrow
- ...and may exclude many feasible points of practical interest
- **Effects of model uncertainty?**

- Batch reactor $2A \rightarrow B \rightarrow C$
- Kinetic rate constants

$$k_{j}^{0}e^{-E_{j}/RT}$$
, $j=1,2$

Kinetic parameters estimated from experimental data

→ subject to uncertainty

Pre-exponential Arrhenius factors

Activation energies

Pre-exponential Arrhenius factor vs. activation energy for $2A \rightarrow B$

Effect of kinetic parameter uncertainty on predicted process KPIs

Imperial College

London

Computed at T=287K, τ = 340 min

Model-based Design Space determination

Imperial College

London

PSe

Effect of kinetic parameter uncertainty on design space Independent Gaussian distributions, $\sigma = 0.01\%$

Imperial College London

Probabilistic Design Space for Batch Reactor

Effect of kinetic parameter uncertainty on design space Independent Gaussian distributions, $\sigma = 0.1\%$

Probabilistic Design Space for Batch Reactor

Imperial College

London

Effect of kinetic parameter uncertainty on design space Independent Gaussian distributions, $\sigma = 1\%$

Probabilistic Design Space for Batch Reactor

Imperial College

London

Any model-based techniques can determine only the probability of any set of inputs belonging to the Design Space

- Requires quantification of the model uncertainty
 - an integral part of formal model validation/parameter estimation procedures

Given a point *u* in the process input space...

London

5. Concluding remarks

- Process Systems Engineering: integrating framework for existing & new scientific knowledge
- Concept of "risk" is central to regulatory framework
 Juncertainty quantification moves centre stage
- Modelling technology
 - probabilistic modelling \rightarrow high-performance computing ?
 - interdisciplinary usage → user interfaces ?
 - formal validation of tools themselves ?

Imperial College London

