Multiscale Model-Based Process Systems Engineering

Progress and Challenges

Dion Vlachos

Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology Catalysis Center for Energy Innovation

University of Delaware

UNIVERSITY OF DELAWARE

Continuum Mesoscopic Equations

Mesoscopic equation (for diffusion)

$$\begin{split} & \frac{\partial c_t = -\nabla \cdot \left(-\mu[c]\nabla(\delta\varphi[c]/\delta c)\right)}{\frac{\partial c}{\partial t} = \nabla \cdot \left\{ \mathrm{De}^{-\beta \mathrm{J}^* \mathrm{c}} \left[\nabla \mathrm{c} - \beta \mathrm{c}(1-\mathrm{c})\nabla \mathrm{J}^* \mathrm{c}\right] \right\}}{\mathrm{J}^* \mathrm{c} = \iint \mathrm{J}(|\mathrm{r} - \mathrm{r}'|)\mathrm{c}(\mathrm{r}')\mathrm{d}\mathrm{r}'} \end{split}$$

- Mesoscopic equations include essential physics
 - * Intermolecular forces, microscopic mechanisms
 - * Are exact when interactions are long ranged
- Amenable to systems tasks
- > Spectral methods for efficient, parallelizable calculations

PRL 85, 3898 (2000); PRL 84, 1511-1514 (2000); Chem. Eng. Sci. 58, 895 (2003)

Realistic Nanomaterials Process Modeling: New Frontiers

> Product design and control at the nanoscopic scale

- > Emergent behavior and/or emergent properties
- > Combinatorial complexity
- > Validation, verification, and uncertainty
- Computer architectures

JNIVERSITY OF DELAWARE
Open Questions
> Hierarchy of length and time scales
 Process model-based control impossible
> Emergent behavior
 Sluggish dynamics, sensitivity to conditions
Extremely high dimension (distributed parameter systems)
> Intrinsic stochastic fluctuations
> Poor controllability
* Control nanoscale features over several orders of magnitude
* A mere handful of manipulated variables at the macroscale
> Poor observability
 Measurements of features are unavailable online

UNIVERSITY OF DELAWARE

Likelihood Ratio Gradient Estimation

 A weighted average similar to importance sampling

$$\frac{\partial E(f)}{\partial \theta_j} = E\left(f\frac{\partial \ln p_v}{\partial \theta_j}\right)$$
$$\frac{\partial \ln p_v}{\partial \theta_j} = \sum_{i=1}^n \left[\frac{I(\mu_i, j)}{\theta_j} - \tau_i h_j(S_i)\right]$$
$$I(\mu_i) = \begin{cases} 1 & \text{if } \mu_i = j \end{cases}$$

$$I(\mu_i, j) = \begin{cases} 1 & \text{if } \mu_i = j \\ 0 & \text{if } \mu_i \neq j \end{cases}$$

- Calculate the entire gradient vector from *one* simulation
- Trivial code modification (record reaction fired and time)

McGill et al., *J. Comput. Phys.* **231**, 7170(2012)

 $\begin{array}{ll} I(\mu_{i\prime},j) & : \mbox{ indicator function} \\ \mu_i & : \mbox{ reaction fired at } i^{th} \mbox{ event} \\ \tau_i & : \mbox{ time step of } i^{th} \mbox{ event} \\ S_i & : \mbox{ state at } i^{th} \mbox{ event} \\ h_j(\cdot)_: & : \mbox{ related to propensity of } j^{th} \\ \mbox{ reaction} \\ p_v & : \mbox{ joint pdf for random} \\ variables \end{array}$

🔠 UNIVERSITY OF DELAWARE

Define Metrics

- Difficult to use images as process outputs for control
 Translations and rotations: *morphologically equivalent* but *different images*
- Morphological information arises from image analysis
- > Define **metrics** that are *invariant to basic transforms* on the image

Metrics (9)

- ✓ Hexagonal order parameter
- ✓ Distance between islands
- ✓ Characteristic length
 - ✓ From spectral analysis of surface^[1]
- ✓ Number of defects
- ✓ Minkowski measures^[2]
 - ✓ Area fraction
 - ✓ Perimeter of nanodots
 - ✓ Euler characteristic (connectivity)

Abukhdeir and Vlachos, J. Comp. Phys. (2011); [2] Legland et al., Image Anal Sterol (2007)

JNIVERSITY OF DELAWARE
Open Questions
> Hierarchy of length and time scales
 Process model-based control impossible
> Emergent behavior
 Sluggish dynamics, sensitivity to conditions
 Extremely high dimension (distributed parameter systems)
Intrinsic stochastic fluctuations
> Poor controllability
* Control nanoscale features over several orders of magnitude
* A mere handful of manipulated variables at the macroscale
> Poor observability
 Measurements of features are unavailable online

Open Questions

- Uncertainty quantification
 - What data and at which scale to inject data?*
 - > Beyond continuum models: e.g., Stochasticity
- Molecular structure and composition of catalyst
 - Optimize catalyst loading to explore bifunctionality
 - Extend to multicomponent catalysts
 - Account for crystal structure beyond core-shell
- Consider catalyst stability and catalyst dynamics
- Construct and search databases
 - Structure, composition, chemistry, reactor operating conditions

* Prasad et al., Ind. Eng. Chem. Res. 47, 6555 (2008); 48, 5255 (2009)

🔠 UNIVERSITY OF DELAWARE

Conclusions/Outlook

- Multiscale modeling of prototype models is mature
- Inverse engineering (optimization and control) at the nanoscale is challenging and offers opportunities
- Many interesting problems are either complex or emergent and their modeling is plagued by combinatorial complexity
- Hierarchical multiscale modeling is an approach coping with these issues
- Error quantification , code verification and validation, and uncertainty propagation are essential
- Parallelization holds promise for substantial speedup

🔠 UNIVERSITY OF DELAWARE

Acknowledgements

- Students/Postdocs
 - Materials design: Abhijit Chatterjee; Jake McGill; Nasser Abukhdeir
 - Energy/Catalysis: Danielle Hansgen; Ying Chen; Mike Salciccioli; Vinay Prasad
- Collaborators
 - Markos Katsoulakis (UMass) and Petr Plechac (UD); Mathematical underpinnings
 - Michela Taufer (UD); GPUs
 - Tunde Ogunnaike (UD); Control
- Funding
 - NSF, DOE, EFRC