

Smart Plants

Autonomy In Plant Operations

Apostolos Georgiou, PhD

(Senior Engineering Advisor, ExxonMobil, Retired) ATG Beyond Automation, LLC

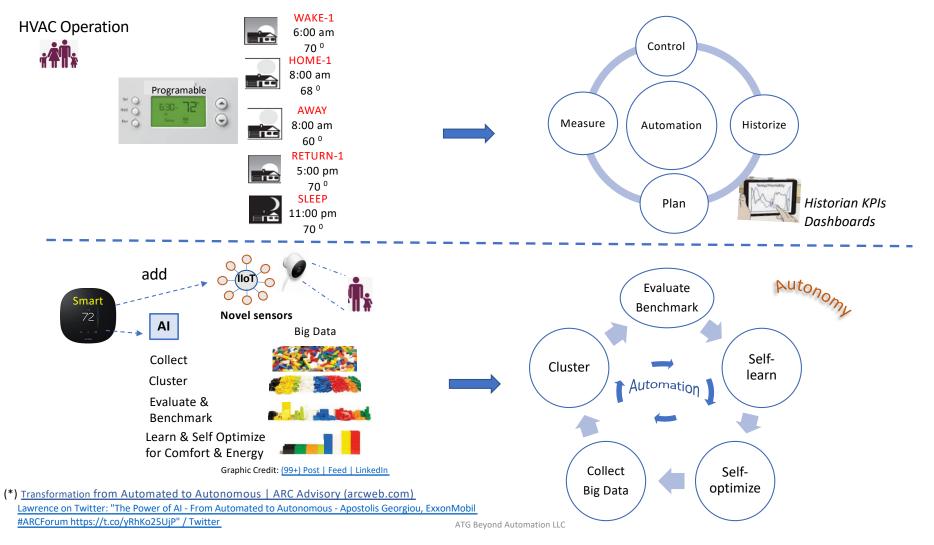
Kiran Sheth, PhD

(Distinguished Engineering Associate, ExxonMobil, Retired) Intelligent Process Operations, LLC

Presentation at "2022 FIPSE Conference", June 25-29, 2022

4th Industrial Revolution ^(*)

	1st	2 nd	> 3rd		> 4th
	Mechanization, water power, steam power	Mass production, assembly line, electricity	Computer and automation		Cyber Physical Systems
	1780	1870	1970		
	Steam	Electricity	Computing		Intelligence (AI)
8. R	eference	From	Automation (Digitization)	to	Autonomy (Digitalization)


Industry 4.0 Trends & Exponential Growth of

- Industrial Internet of Things (IIoT)
- Low-cost & novel sensors
- Cloud Computing
- Mobility
- Analytics & Numerical/Statistical AI
 - Big Data
 - Machine Learning
- Cognitive & Semantic AI
- IT/OT Systems Integration
 - Operational Data Pipelines
- Autonomous Operations

Graphic Credit & Reference:

(*) Ten Years of Industry 4.0-Quo Vadis? | AllAboutLean.com

From Automation to Autonomy (*)

From Autonomous Cars

- Multi & variable Operation (i.e., speed, path)
- Multiple disturbances to detect/infer online
- Requires online optimization (best route, dynamic route)

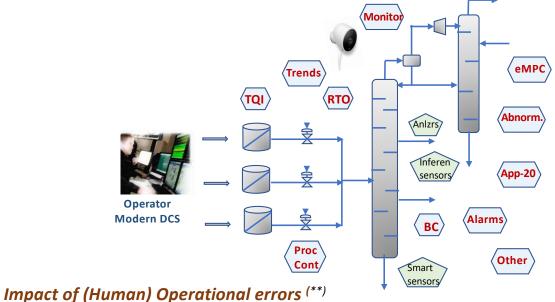
RADAR SENSORS ADDITIONAL LIDAR UNIT ADDITIONAL LIDAR UNITS

Graphic credit: Google self driving car | Self driving, Mini cars, Driving (pinterest.com)

SAE Levels of Autonomy: <u>Automated Vehicle Safety | NHTSA</u>

Driver/Operator Involvement

- L0: You Drive, You Monitor
- L1: foot off (adaptive cruise control)
- L2: hands off (now) for limited modes/areas
- L3: eyes off (you are available to take over)
- L4: mind off
- L5: drive off

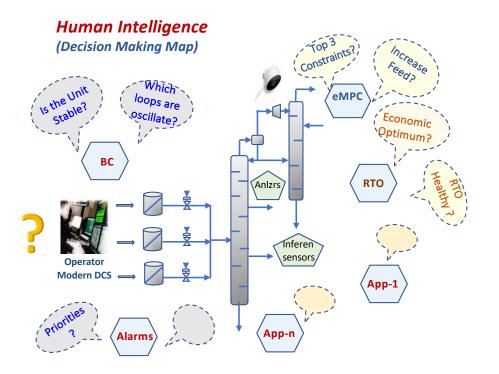

(*) <u>Transformation from Automated to Autonomous | ARC Advisory (arcweb.com)</u>

Autonomous Operations (*)

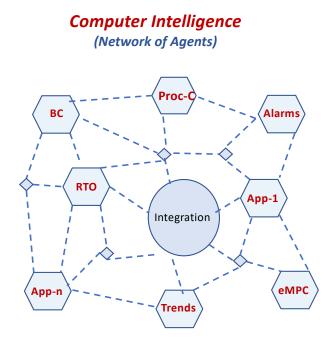
• Multi-mode operations;

То

- Complex disturbances (short/long-term disturbances) and manipulated variables.
- Requires online optimization for various unplanned conditions (weather, equip. failures, supply chain disruptions)



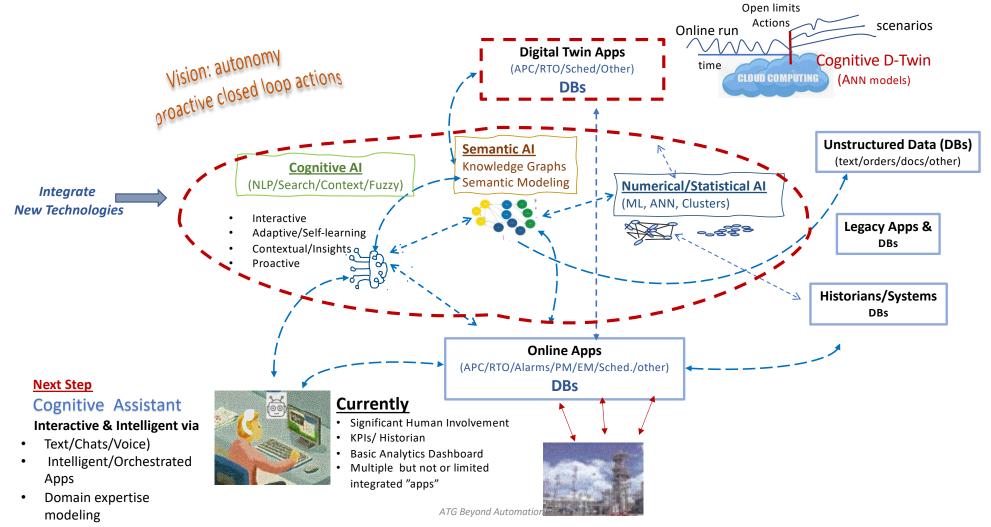
"The biggest "losses" in our industry are a result of our own mistakes..


This is why we believe in <u>#autonomousoperations</u>" (KBC/YKG; "Survey of Dollar Loss per Major Incident" by J&H& MCLenna, Inc)

ATG Beyond Automation LLC

(**) (99+) Post | Feed | LinkedIn

- Human analysis & actions are based on experience and limited key variables
 - Detects plant health, modes, states by previous (knowledge) patterns
 - Makes decisions/actions for safety & stability & minimal optimization



- Scans millions of data in mins; Structured & Unstructured Data
 - Connect different DBs detect modes and instruments
 - Run scenarios
 - Can find a true (global) economic optimum
 - Leverage unconventional measurements such as videos

"Autonomy" Objective: Enhance operator decision making by AI to minimize human errors (Intelligent Self-optimizing)

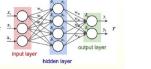
- Safe, reliable, and consistent operation. Achieve economic optimum at all operating modes
- Continuously evaluate constraints and performance and finds the new optimum

Achieving Intelligent Self-Optimizing Operations: A conceptual Design

Challenges & Thoughts


Big Data, Modeling, & Expert Knowledge: Partners in the Journey to Autonomy

Modeling is the Core of the Applications


Fundamental ("Mechanistic" & Explainable) Models

- Fundamental knowledge of how things work
- Mechanistic based casual understanding and explanations
- Reduced models

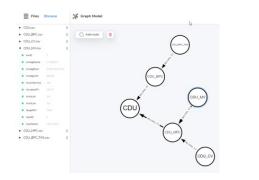
Data Driven Models – Machine/Deep Learning (Numerical/Statistical AI)

- Based on historical Data. Active learning based on excitation and guided experimental
 - Learning comes from data resulting in networks of weighted links between inputs and outputs via layers of node

i.e., SVM, DM, CNN, Markov/Decision Models, LSTM, Autoencoder, SOM, Reinforcement Learning

Cognitive & Semantic AI type Models

- Cognitive models (i.e., NLP models)
- Interactive Intelligence
- Text modeling & Semantic (based on concepts) modeling & reasoning
- Fusion of structured & unstructured data
- Embedded domain expertise Knowledge Graph Models

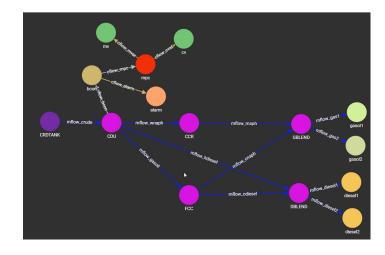

Challenge: Represent business problem by integrating "domain expertise" with math and statistics.

<u>Opportunity</u>: The recent advances in Cognitive/Semantic Technologies (i.e., "unstructured data/text" modeling, semantic reasoning) present an enormous opportunity to move "intelligence" in the math environment towards intelligent & autonomous operations

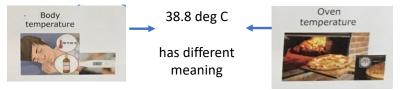
Challenge: Integration of Domain Expertise Knowledge; Structured and Unstructured Data

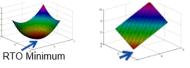
AI: Semantic Modeling/Knowledge Graphs

- Modeling of "concepts" (semantics), hierarchy, and data relationships. Can combine structured & unstructured data
- Can provide real-time recommendations, based on
 - "Collaborative" filtering such as similarity of behaviors and operations or best practices
 - "Content" filtering such as patterns of constraints and interactions among entities/concepts (i.e., between apps)


"KG on interaction of "control" apps (domain expertise)

Schema


i.e., KG of "Base Process Control (BPC)" and MPC


"KG on interaction of Units for process control

Challenge: Contextualization of Data is a Key for Intelligent Systems

- The "context" of data is usually defined by the "receiver" of the data and defines the implementation
 - <u>Example:</u> MPC receives "set-points" from RTO. Every set-point has a "context". Depending on the "context" each set-point is implemented differently
 - Context of a "set-point"

- How to contextualize data (i.e., Knowledge Graph and "metadata")
- Where to contextualize (i.e., real-time analytics at the interface (edge devices/computing)) ?)

Contextualization Enhances Human Decision Making

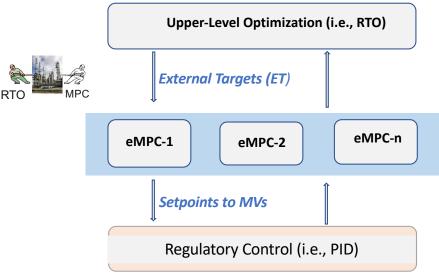
https://energyfactor.exxonmobil.com/energy-innovation/smart-technologies-intelligent-operations/

Data: 800 deg C Context: "This is lower than average"

(very useful "context" for a new operator to make a decision)

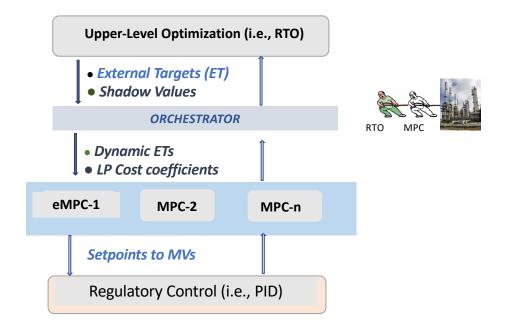
(*)

Challenge: Integration vs Orchestration of Applications (*)


Integration : Communicate data (i.e., values)

Orchestration : Communicate data and context. Achieves a better synchronization towards a common objective

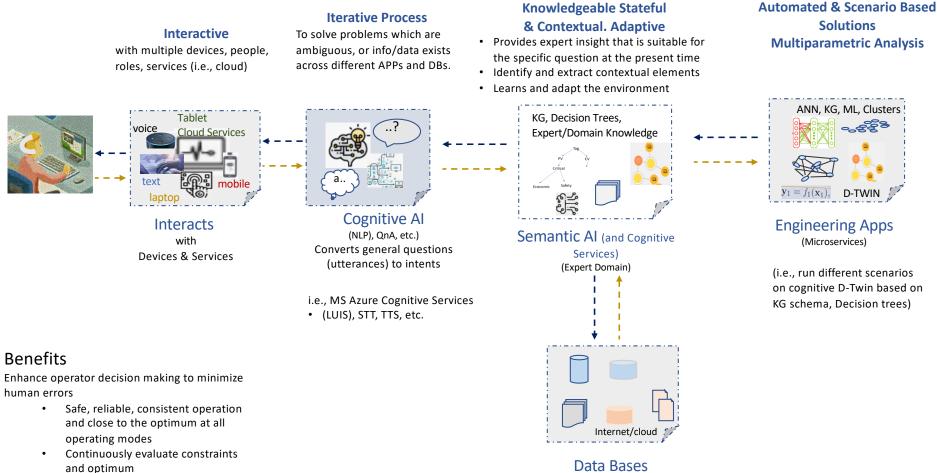
Example^(**)


Integration of Applications

• Sends just data

Orchestration of Applications

Sends data with <u>CONTEXT</u> (i.e. "active set" of constraints)



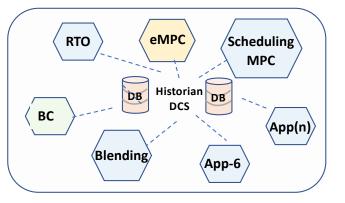
Graphic Credit:

(**) https://www.focapo-cpc.org/pdf/Georgiou.pdf

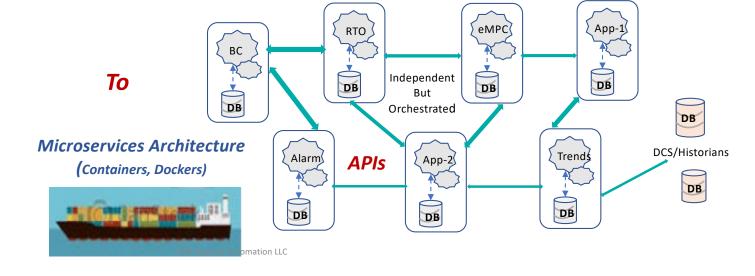
(*)Transformation from Automated to Autonomous | ARC Advisory (arcweb.com)

Towards Autonomous Operations: Components of An Al System

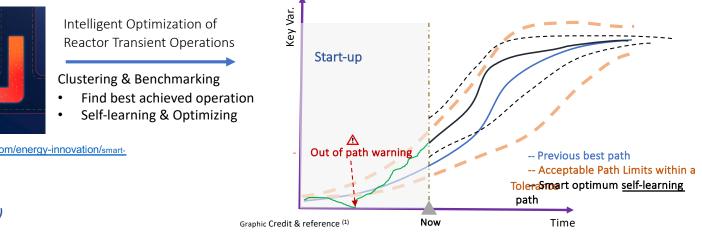
Data Bases ATG Beyond Automation LLC Structured & Unstructured


New Flexible & Sustainable System Architectures Enable the Journey to Autonomy

- Hard to accommodate various technology
 advancements
- Hard to make changes
- Unreliable framework (sustainment)
- Limited Scalability



Monolithic Architecture



- Flexible and easy to add new technologies
- Easy updates
- Easy deployment & sustainment
- Can be scaled independently
- Agnostic to platforms

Data Driven AI Systems Guide Operators: Industrial Examples

• EM "SmartLane" AI Optimizes Transients (1,2)

Outside of the "Golden Zone" or "Smart Lane"

- Indicates a higher probability of failure
- If close to the boundary, the uncertainty is high
- An Intelligent system should "re-route" the operation if an unplanned event occurs (like GPS for traffic accidents)

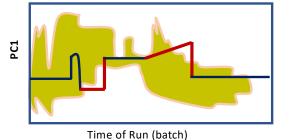
A. Georgiou, and O. Onel, "Towards Autonomous Manufacturing Operations", Presented at 2020 ARC Industry Forum", Orlando, FL, 2020
 A. Georgiou and O. Onel, "Towards Autonomous Operations" Presented at 2020 Aspentch Advisory Committee", June, TX, 2020

- (2) US20210240175A1 Methods and systems for performing transient processes Google Patents
- (3) (672c) Data-Driven Predictive Monitoring and Operation Support for Change-over Processes in Biopharmaceutical Brug Predoct Matauration: AIChE

Cars: Sensors → road departure alert → automated lane shift Navigation & re-routing

Graphic Credit

https://energyfactor.exxonmobil.com/energy-innovation/smarttechnologies-intelligent-operations/

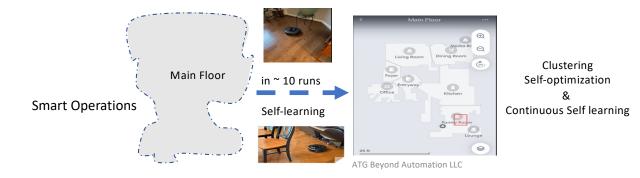

Guides operators

to the best path

orward

• H L Golden Lane (3)

Based on best runs define the "golden" lane of operation



Summary (1/2)

Autonomy: Systems that – without manual (human) intervention – can change their behavior in response to unanticipated events during operations (Watson & Scheidt (2005))

- Don't confuse autonomy with automation system which "performs" defined instructions within a limited scope of operations.
- Key Characteristics:
 - Self-managing : collects, organizes data & automates decisions
 - Self-learning : improves over time, and self-adapts
 - Self-optimizing : more than automation, controls, and optimizes itself (continuously evaluate the data/patterns)

Human stills needs to define goals & objectives and specify the boundaries

Summary (2/2): Autonomy is a Journey of Integrating AI and Automation/Optimization Technologies

Enhance Automation To	Autonomous/Smart Operations	
Process Control (currently reacting to known problems)	Detect situations that can neither be modeled by design nor have been experienced before	
Data Values	Data Contextualization/New Formats	
Supervised Learning (Data Recon./Regression)	Clustering, Pattern Recognition, Unsupervised Learning ("Feature" Engineering)	
Predefined Learning/Knowledge	Iterative Learning (Cognitive), Self-learning, Knowledge Graphs (KG)	
Numerical/Statistical Modeling	Semantic Modeling AI (Structured & Unstructured Data, KG)	
Integrated Applications	Orchestrated Applications	
Monolithic Architectures	Microservices (Independent but Coordinated Systems)	

From Computer aided to Compute Science based Chemical Engineering