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My lab builds models for two types of problems

Kinetics modeling for biomolecules, cells, or organisms that react, interact, and/or
change state in biochemical networks
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My lab uses a wide range of methods,
all computational/mathematical

Differential equations (ordinary & partial)

& numerical methods
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Finite element modeling:
fluid dynamics & biomechanics

Dynamic
systems, PSE,
& data analysis

time constant of activation, t, (s)




Systems Biomedicine & Pharmaceutics Lab
Multiscale Modeling of Tissues, Treatments, & Toxicology

Diabetic Kidney Disease
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Challenges for control of human diseases

* Limited manipulated variables



Limited manipulated variables in physiological processes
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Challenges for control of human diseases

* Limited manipulated variables
* Multiscale (space and time) interacting systems



Multiscale systems biomedicine considers network interactions
across length & time scales
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Multiscale systems biomedicine is the translational counterpart
to systems biology

| | organ tissue-cell intracellular molecular
clinical indicators | level level network level level |
& analyses

levels of interacting systems

drug intake drug action on targets

Wist et al., Genome Med, 2009



Time scales can be quite separated in chronic diseases
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Mizeranschi et al. in Systems Medicine, Springer, 2016
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Modeling approaches are often selected based on the questions
of interest—must make simplifications somewhere
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We study disturbances to the bone remodeling cycle & dietary
stimuli to restore homeostasis
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Cook, Lighty, Smith, Ford Versypt, Front Syst Biol, 2024
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Many systemic factors can influence the bone remodeling cycle
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First objective: Mathematical modeling of gut-bone axis and
implications of butyrate treatment on bone
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v+ Create a multi-compartment PBPK model to track
and quantify effects of butyrate on Tregs in gut,
blood, and bone

« Connect Wnt10b expression enhanced by Tregs
to bone remodeling

« Validate the model with experimental observations
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We connected 3 compartment gut-immune system response
to bone remodeling
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R21 grant exploring prebiotic benefits in the bone

Short chain fatty acid influence on normal and estrogen deficient bone
remodeling
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OVX and sham-operated animals

Carley Cook

Various experiments with
prebiotic diet and immune
modulators:

 Tart cherry

* Fructooligosaccharides Prisiam, ..., Ford Versypt, ..., Smith, JBMR Plus, 2024
« Galactooligosaccharides




R21 grant exploring prebiotic benefits in the gut

Short chain fatty acid and estrogen influence on gut inflammation
and immune signaling
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Challenges for control of human diseases

* Limited manipulated variables
* Multiscale (space and time) interacting systems
* Big AND small data issues and limited dynamic measurements



In theory we can relate omics up to phenotype. In practice...

* Integrating large volumes
of disparate types of data

« Sparsity of data connecting
diverse patient phenotypes
or disease conditions
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Systems biomedicine workflow

PRIDR: I NEWLY
KNOWLEDGE | GENERATED
PUBLICATIONS : DATA
|
|
DATA
( LITERATURE : B RBUCTION \
[
'
EXPERTS DATABASES NETWORK

|
|
DISEASE !
|
|

MODELLING

'OMICS
SIGNATURES

HYPOTHESIS

TARGETED
VALIDATION

MATHEMATICAL
MODEL

RANSLATIONALD
RESEARCH

CLINICAL
APPLICAITONS

Mazein et al., NPJ Sys Biol Appl, 2018

K TESTED J
HYPOTHESIS



Fig. 4 Multi-modality and
multi-fidelity modeling of
biomedical systems. Data from
both experiments and computa-
tional models can be combined
through machine learning

to create predictive models.
The underlying assumption is
that, for a system of interest,
data from different sources is
correlated and can be fused.
Parameter estimation, system
identification, and function
discovery result in inverse
problems, for example, the
creation of a digital twin, and
forward problems, for example,
treatment planning
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Diabetic kidney disease modeling is a long-standing team effort
in the lab supported by NSF CAREER
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Our work in the kidney started from biological control

of blood pressure

Fluid dynamics and mass transport

Two mechanisms regulate blood flow

= Myogenic mechanism

= Tubuloglomerular feedback (TGF)
Autoregulation is the mechanism
that keeps blood flow and filtration rate

relatively constant despite fluctuations
in systemic blood pressure
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The model includes two processes coupled by feedback

from the Cl- ion concentration sensor

Blood vessel wall mechanics
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Kidney disorders include multiple cell types

segments across different scales
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We consider multiple glomerular (kidney) cell types damaged in
DKD & how they interact
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Hyperglycemia damages the glomerular filtration barrier primarily
via podocytes
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We are modeling the effects of renal fibrosis
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We are connecting the submodels

for the damage to each tissue

layer into a finite element model

Glover & Ford Versypt,
in prep, 2024

Kidney Int, 2017¢
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We are building a logic-based model for signaling between
endothelial cells and immune macrophages—AIll manual curation
of prior knowledge
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Gap Width

Patidar & Ford Versypt, BioRxiv, 2023



We also extended the work to use SemNet 2.0 to text-mine
enhance our network

}3 million+ PubMed articles to

DKD
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Close integration between experimentalists and systems biology

Living-material-based Living-material-based modelling Living-material-based
cataloguing of the tumour ecosystem therapies

Systems biology models of tumour ecosystems
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Close integration between experimentalists and systems biology
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Biomaterials/tissue-engineered organ-on-a-chip provide rich
opportunities for PSE and systems biomedicine
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Challenges for control of human diseases

* Limited manipulated variables

* Multiscale (space and time) interacting systems
* Big AND small data issues

* Leveraging Al/ML for biomedical applications



IMAG white paper on ML & MSM in biosystems
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Framework for integrating data-driven multiscale modeling and machine learning
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IMAG white paper on ML & MSM in biosystems:
open challenges and opportunities
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Challenges for control of human diseases

* Limited manipulated variables

* Multiscale (space and time) interacting systems
* Big AND small data issues

* Leveraging Al/ML for biomedical applications
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