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Computer Control

Feedback control of cell populations



Computer Control of Gene Expression in Yeast
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Feedback control of recombinant protein production

Protein Expression vs Stress Sensing Gene-Expression-Induced Stress
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Cybergenetic control of recombinant protein production
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Feedback Stabilization of Microbial Co-Cultures

2 strains with different growth rates Engineered light-controlled cell growth

Light Induced antibiotic
resistance

Feedback Control

Experiment Simulation

jutierrez, Kumar, Khammash, Nature Communications (2022)



Key Challenges

~ Genetic engineering of production strains (cost, burden, ...)
- Suitable sensors (key enzymes, metabolites, intermediates, products, cell state, ...)

~ Light penetration in bioreactors

500 L to 200,000 L Photobioreactor Photobioreactor

~ May be limited to low-volume high-value products

> Insights from lab scale bioreactor controllers will guide the design of genetic controllers (no light needed)



Computer Control

Feedback control of single cells



Underlying Technology: A Device for Patterned lllumination
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Computer Control of Single Cells
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Computer Control of Single Cells
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The Cyberloop
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Closed-Loop Control
of Single Yeast Cells

Input (light) Output (MRNA)



Application Opportunities: Tissue and Organ Engineering

Synthetic Morphogenesis

. - Elective death
Stem cell differentiation ective dea

N Y
X (O .A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.AQ
00000 .'...'.'. 0000000000000000000
A A AANANANAANAAN
..... v VY Y N Y
A A AA A .
Al

Al A A Al

g Fesscecccceccecssssol
(XXX 000000000 (X X))
000 .0 X X ()
A A
oéuAQAQ.o.o.o.o.o.o. 5 .0
Engineered tissue
Adhesion
@,04
Saxena et al (2016), Nat. Comms Wu et al. (2023), Cell Reports .. ) o
O .
.‘ : .‘. > Spheriod
Elementary Morphogenetic Behaviors ©0, 0
Proliferation Elective death Cell fusion Adhesion
Proliferation
De-adhesion Motility Bounaary shrinkage
> Organoid

Davies (2023), Proc. IEEE



Opportunities: Tissue and Organ Engineering

Scale bar, 200 um

(blue stain indicates dead cells)

Kumar et al. (2024) Nature Commes., in revision Kumar et al. (2024) Nature Commes., in revision Collab. w J. Davies and M. Zurbriggen (unpublished)



Single-Cell Control: Challenges

» Poor understanding of developmental processes

» Performance of optogenetics in mammalian cells

Activity

Light intensity

Dynamic performance Phototoxicity Gene Silencing

» Usable wavelengths and penetration

> 3D localized light delivery

Custom Lightsheet microscope

Decker & Khammash (unpublished)
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Biomolecular Control

Genetically engineered control systems



Challenges for Genetic Engineering of Functional Circuits
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Deterministic Models of Chemical Reactions

System Dynamics

Deterministic: X(t) =S AMX (1))
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Stochastic Models of Chemical Reactions

System Dynamics
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The Biomolecular Regulation Problem

disturbance

Plant Network Problem Statement

Noisy dynamics

WV\\M\WW’/

Given a stochastic biochemical reaction network (plant).

regulated . . . . .
M >@ voriable Augment it with a biochemical reaction network (controller)
.
! such that the composite network (closed-loop) achieves:

! e Stability: A unique attracting stationary distribution (ergodicity)

\ /,‘ e Set point tracking: a variable of interest, X, , is steered to

O /¢ a set-point r

Setpomt / '/" e Robust perfect adaptation (RPA): X, is maintained at r in spite of

» constant disturbances

WW » changes in parameters

» changes in plant network topology
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A Molecular Motif for RPA: Antithetic Integral Feedback
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Briat, Gupta, Khammash, Cell Systems (2016)

Controller Implements Integral Control
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Universality of the Antithetic Integral Controller

Plant Network 4 b
Theorem (Universality):

Noisy dynamics

M\M\WW, /‘\ o Every controller that achieves RPA must imbed
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Aoki, Lillacci, Gupta, Baumschlager, Schweingruber, & Khammash, Nature, 2019.



Characterizing maxRPA Networks: Deterministic Setting

Example Network

'S =(1,-1,0,....,0).

The deterministic RPA problem:

Given a deterministic reaction network with stable dynamics, find conditions

for an output, X, to achieve maxRPA (robust to almost all rates).

Setpoint encoding: r is encoded by a subset of the chemical reactions. It can
be shown that at least two such reactions must be involved:
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Theorem (RPA Characterization): The network achieves maxRPA if and only if

1. V11 # V19, and Vi1 = V;9 fOI’ ) # 1.

2. There exists a vector ¢ and a scalar « satisfying ¢! S = (k,—1,0,...,0).
1
In this case, r = (mg—;) R
N /

Gupta & Khammash, Proc. Nat. Acad. Sci. (2022)



An Internal Model Principle for Chemical Reaction Networks

Example Network
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Classification of species in RPA networks:

Consider the vector ¢ satisfying ¢S = (x, —1,0,...,0), for x > 0.

We can think of the sign of ¢; as the ‘charge’ of species X,.
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Gupta & Khammash, Proc. Nat. Acad. Sci. (2022)



Integral Feedback Motifs



Building the First Synthetic Integral Controller in a Living Cell

Antithetic circuit

7 genes, 6 promoters, 2 plasmids
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Integral Circuit Achieves Perfect Adaptation
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Engineering Controllers in Mammalian Cells
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Summary

e Feedback is a recurring theme in natural systems (robustness)
e Feedback control in synthetic biology as a means to achieve robust and reliable designs

o A new field at the interface of control engineering and synthetic biology (Cybergenetics)

» Deeper understanding of cellular regulation
» Novel circuits for robust and precise cellular control
» Applications: industrial biotechnology, synthetic biology, tissue/organ engineering, personalised medicine, living materials

Challenges

e Populations computer control:

» Practical: light penetration, cost of modifying production strains, sensing key variables

» Theoretical/computational: better models, multivariable control of bilinear systems

e Single-cell computer control:

» Practical: specialized hardware, 3D localization of light, silencing, toxicity

» Theoretical/computational: better models, stochastic control, image processing

e Genetic control:

» Practical: dilution, saturation, burden, precision parts, post-translational circuits, anti-windup

» Theoretical/computational: a control theory for chemical reactions, system ID methods




